Robust Estimation of Shape-Constrained State Price Density Surfaces

Given a theoretical pricing model, an implied volatility can be extracted from an option’s market price. Given a set of options with the same maturity and a range of strike prices, it is possible to extract (an approximation to) the entire risk-neutral probability density without having to assume a theoretical pricing model. There are a variety of related methods to do this, but all are subject to certain problems, including the fact that the data never exist to allow full estimation of the tails. Some methods produce improper densities with negative portions. In this article, Ludwig introduces a neural network approach to extract risk-neutral densities from option prices, imposing only a small number of constraints, such as probabilities must be nonnegative and an option’s price must be above intrinsic value. The resulting densities are smooth and sensible, even for days that other approaches find extremely difficult to handle.

[1]  J. Rosenberg Pricing Multivariate Contingent Claims Using Estimated Risk-Neutral Density Functions , 1997 .

[2]  Alexander Narr,et al.  Neural Networks and the Valuation of Derivatives { Some Insights into the Implied Pricing Mechanism of German Stock Index Options , 1997 .

[3]  P. Carr,et al.  A note on sufficient conditions for no arbitrage , 2005 .

[4]  Matthias R. Fengler,et al.  Option Data and Modeling BSM Implied Volatility , 2010 .

[5]  Nikolaos Panigirtzoglou,et al.  Testing the Stability of Implied Probability Density Functions , 2002 .

[6]  Andrew W. Lo,et al.  Nonparametric estimation of state-price densities implicit in financial asset prices , 1995, Proceedings of 1995 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[7]  Matthias R. Fengler,et al.  Semi-Nonparametric Estimation of the Call Price Surface Under No-Arbitrage Constraints , 2012 .

[8]  Merton H. Miller,et al.  Prices for State-contingent Claims: Some Estimates and Applications , 1978 .

[9]  A. Lo,et al.  Nonparametric Risk Management and Implied Risk Aversion , 2000 .

[10]  D. Madan,et al.  Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options , 2000 .

[11]  P. Heider,et al.  Arbitrage-free approximation of call price surfaces and input data risk , 2012 .

[12]  Kris Jacobs,et al.  The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work so Well , 2009, Manag. Sci..

[13]  Yacine Ait-Sahalia,et al.  Nonparametric Option Pricing Under Shape Restrictions , 2002 .

[14]  J. Jackwerth Recovering Risk Aversion from Option Prices and Realized Returns , 1998 .

[15]  Douglas T. Breeden,et al.  Prices of State-Contingent Claims Implicit in Option Prices , 1978 .

[16]  Wolfgang Härdle,et al.  On extracting information implied in options , 2007, Comput. Stat..

[17]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[18]  Bernard Widrow,et al.  Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[19]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[20]  Yuhang Xing,et al.  What Does Individual Option Volatility Smirk Tell Us About Future Equity Returns? , 2008 .

[21]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[22]  Rama Cont,et al.  Dynamics of implied volatility surfaces , 2002 .

[23]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[24]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[25]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[26]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[27]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[28]  JackwerthJens Carsten,et al.  Option-Implied Risk-Neutral Distributions and Risk Aversion , 2006 .

[29]  Robert Hecht-Nielsen,et al.  On the Geometry of Feedforward Neural Network Error Surfaces , 1993, Neural Computation.

[30]  Linda Salchenberger,et al.  A neural network model for estimating option prices , 1993, Applied Intelligence.

[31]  R. Rebonato Volatility and correlation : the perfect hedger and the fox , 2004 .

[32]  S. Ross Options and Efficiency , 1976 .

[33]  Yoshua Bengio,et al.  Pricing and Hedging Derivative Securities with Neural Networks and a Homogeneity Hint , 2000 .

[34]  Matthias R. Fengler Arbitrage-free smoothing of the implied volatility surface , 2009 .

[35]  Spiros H. Martzoukos,et al.  Generalized parameter functions for option pricing. , 2010 .

[36]  Allan M. Malz Using option prices to estimate realignment probabilities in the European Monetary System: the case of sterling-mark , 1996 .

[37]  Yoshua Bengio,et al.  Incorporating Functional Knowledge in Neural Networks , 2009, J. Mach. Learn. Res..

[38]  Andreas Gottschling,et al.  Mixtures of t-distributions for Finance and Forecasting , 2008 .

[39]  J. Campa,et al.  Implied Exchange Rate Distributions: Evidence from OTC Option Markets , 1997 .

[40]  M. Pritsker Nonparametric Density Estimation and Tests of Continuous Time Interest Rate Models , 1998 .

[41]  Martin T. Hagan,et al.  Neural network design , 1995 .

[42]  Alexandros Kostakis,et al.  Market Timing with Option-Implied Distributions: A Forward-Looking Approach , 2011, Manag. Sci..

[43]  S. Ross The Recovery Theorem , 2011 .

[44]  Martin T. Hagan,et al.  Gauss-Newton approximation to Bayesian learning , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[45]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[46]  Stephen Figlewski Estimating the Implied Risk Neutral Density , 2008 .

[47]  Matthias R. Fengler,et al.  Semi-Nonparametric Estimation of the Call Price Surface Under Strike and Time-to-expiry No-Arbitrage Constraints , 2013 .

[48]  Jeff Fleming,et al.  Implied volatility functions: empirical tests , 1996, IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[49]  F. Audrino,et al.  An Empirical Analysis of the Ross Recovery Theorem , 2015 .

[50]  Jim Gatheral,et al.  Arbitrage-free SVI volatility surfaces , 2012, 1204.0646.

[51]  Stephen Figlewski What is Risk Neutral Volatility? , 2012 .

[52]  Vance L. Martin,et al.  Parametric pricing of higher order moments in S&P500 options , 2005 .

[53]  Stephen Figlewski,et al.  Anatomy of a Meltdown: The Risk Neutral Density for the S&P 500 in the Fall of 2008 , 2009 .

[54]  Robert F. Dittmar,et al.  Ex Ante Skewness and Expected Stock Returns , 2009 .

[55]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[56]  R. Cont Beyond Implied Volatility: Extracting Information From Option Prices , 1997 .

[57]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[58]  M. Stutzer A Simple Nonparametric Approach to Derivative Security Valuation , 1996 .

[59]  Jianqing Fan,et al.  Option Pricing With Model-Guided Nonparametric Methods , 2009 .

[60]  Bhupinder Bahra Implied Risk-Neutral Probability Density Functions from Option Prices: Theory and Application , 1997 .

[61]  Mark Rubinstein,et al.  Edgeworth Binomial Trees , 1998 .

[62]  Patrick J. Dennis,et al.  Risk-Neutral Skewness: Evidence from Stock Options , 2002 .

[63]  P. Buchen,et al.  The Maximum Entropy Distribution of an Asset Inferred from Option Prices , 1996, Journal of Financial and Quantitative Analysis.

[64]  Stephen Figlewski,et al.  The Impact of the Federal Reserve's Interest Rate Target Announcement on Stock Prices: A Closer Look at how the Market Impounds New Information , 2010 .

[65]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[66]  Peter Christoffersen,et al.  Série Scientifique Scientific Series the Importance of the Loss Function in Option Valuation the Importance of the Loss Function in Option Valuation , 2022 .

[67]  R. Bliss,et al.  Option-Implied Risk Aversion Estimates , 2004 .

[68]  Markus Ludwig,et al.  Robust Estimation of Shape-Constrained State Price Density Surfaces , 2012 .

[69]  R. Jarrow,et al.  APPROXIMATE OPTION VALUATION FOR ARBITRARY STOCHASTIC PROCESSES , 1982 .

[70]  The Recovery Theorem , 2013 .