Contact Engineering High Performance n-Type MoTe2 Transistors.

Semiconducting MoTe2 is one of the few two-dimensional (2D) materials with a moderate band gap, similar to silicon. However, this material remains underexplored for 2D electronics due to ambient instability and predominantly p-type Fermi level pinning at contacts. Here, we demonstrate unipolar n-type MoTe2 transistors with the highest performance to date, including high saturation current (>400 µA/µm at 80 K and >200 µA/µm at 300 K) and relatively low contact resistance (1.2 to 2 kΩ∙µm from 80 to 300 K), achieved with Ag contacts and AlOx encapsulation. We also investigate other contact metals, extracting their Schottky barrier heights using an analytic subthreshold model. High-resolution X-ray photoelectron spectroscopy reveals that interfacial metal-Te compounds dominate the contact resistance. Among the metals studied, Sc has the lowest work function but is the most reactive, which we counter by inserting monolayer h-BN between MoTe2 and Sc. These metal-insulator-semiconductor (MIS) contacts partly de-pin the metal Fermi level and lead to the smallest Schottky barrier for electron injection. Overall, this work improves our understanding of n-type contacts to 2D materials, an important advance for low-power electronics.

[1]  F. B. McLean,et al.  Electron-hole pair-creation energy in SiO2 , 1975 .

[2]  Christopher M. Smyth,et al.  WSe2-contact metal interface chemistry and band alignment under high vacuum and ultra high vacuum deposition conditions , 2017 .

[3]  Yan Xin,et al.  Field-effect transistors based on few-layered α-MoTe(2). , 2014, ACS nano.

[4]  Robert M. Wallace,et al.  MoS2-Titanium Contact Interface Reactions. , 2016, ACS applied materials & interfaces.

[5]  T. Palacios,et al.  High-Performance WSe2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits. , 2015, Nano letters.

[6]  A. Suslu,et al.  Environmental Changes in MoTe2 Excitonic Dynamics by Defects-Activated Molecular Interaction. , 2015, ACS nano.

[7]  Manuel M. Baizer,et al.  The Electrochemical Society , 1903, Nature.

[8]  Fritz Scholz,et al.  The Electrochemical Society , 2017 .

[9]  D. Suh,et al.  Suppression of Interfacial Current Fluctuation in MoTe2 Transistors with Different Dielectrics. , 2016, ACS applied materials & interfaces.

[10]  E. K. Evangelou,et al.  Fermi-level pinning and charge neutrality level in germanium , 2006 .

[11]  A. Wysmołek,et al.  Raman scattering of few-layers MoTe2 , 2015, 1511.07184.

[12]  W. G. Dawson,et al.  Electronic structure and crystallography of MoTe2 and WTe2 , 1987 .

[13]  Kenji Watanabe,et al.  Interlayer electron–phonon coupling in WSe2/hBN heterostructures , 2016, Nature Physics.

[14]  E. Reed,et al.  Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers , 2014, Nature Communications.

[15]  E. Pop,et al.  High-Field Transport and Velocity Saturation in Synthetic Monolayer MoS2. , 2018, Nano letters.

[16]  J. Appenzeller,et al.  Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model , 2015, Nature Communications.

[17]  Ning Dai,et al.  Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe₂/MoS₂ van der Waals Heterostructures. , 2016, ACS nano.

[18]  Aaron D. Franklin,et al.  Nanomaterials in transistors: From high-performance to thin-film applications , 2015, Science.

[19]  R. Newnham,et al.  The crystal structure of MoTe2 , 1961 .

[20]  Guangjian Wu,et al.  Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect , 2016, Nanotechnology.

[21]  J. Robertson,et al.  3D Behavior of Schottky Barriers of 2D Transition-Metal Dichalcogenides. , 2015, ACS applied materials & interfaces.

[22]  Maria Longobardi,et al.  Surface transport and band gap structure of exfoliated 2H-MoTe 2 crystals , 2014 .

[23]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[24]  Debdeep Jena,et al.  Presence and origin of interface charges at atomic-layer deposited Al2O3/III-nitride heterojunctions , 2011 .

[25]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[26]  Ashish Arora,et al.  Indirect-to-direct band gap crossover in few-layer MoTe₂. , 2015, Nano letters.

[27]  Shenghao Wang,et al.  Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes , 2015 .

[28]  Debdeep Jena,et al.  Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors , 2015 .

[29]  Zhenxing Wang,et al.  Ultrahigh sensitive MoTe2 phototransistors driven by carrier tunneling , 2016 .

[30]  Kazuhito Tsukagoshi,et al.  Electrostatically Reversible Polarity of Ambipolar α-MoTe2 Transistors. , 2015, ACS nano.

[31]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[32]  Suyeon Cho,et al.  Phase patterning for ohmic homojunction contact in MoTe2 , 2015, Science.

[33]  P. Sherwood X-ray photoelectron spectroscopic studies of some iodine compounds , 1976 .

[34]  K. Saraswat,et al.  Increase in current density for metal contacts to n-germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height , 2011 .

[35]  J. Merrick Bonding in scandium monosulfide a NaCl crystal type , 1980 .

[36]  Eric Pop,et al.  Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition. , 2016, Nano letters.

[37]  R. Ruoff,et al.  Carrier‐Type Modulation and Mobility Improvement of Thin MoTe2 , 2017, Advances in Materials.

[38]  A. Davydov,et al.  Hexagonal MoTe2 with Amorphous BN Passivation Layer for Improved Oxidation Resistance and Endurance of 2D Field Effect Transistors , 2018, Scientific Reports.

[39]  H. Jeong,et al.  Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. , 2013, Nano letters.

[40]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[41]  Moon J. Kim,et al.  New Mo6Te6 Sub‐Nanometer‐Diameter Nanowire Phase from 2H‐MoTe2 , 2017, Advanced materials.

[42]  Suyeon Cho,et al.  Bandgap opening in few-layered monoclinic MoTe2 , 2015, Nature Physics.

[43]  R. Liang,et al.  Precisely controllable n-type doping in MoTe2 field effect transistors by hydrazine treatment , 2018, Applied Physics Letters.

[44]  Eric Pop,et al.  Rapid Flame Synthesis of Atomically Thin MoO3 down to Monolayer Thickness for Effective Hole Doping of WSe2. , 2017, Nano letters.

[45]  M. Rodwell,et al.  Influence of gate metallization processes on the electrical characteristics of high-k/In0.53Ga0.47As interfaces , 2011 .

[46]  B. E. Brown The crystal structures of WTe2 and high‐temperature MoTe2 , 1966 .

[47]  H. Wong,et al.  Unipolar n-Type Black Phosphorus Transistors with Low Work Function Contacts. , 2018, Nano letters.

[48]  Zhiyong Fan,et al.  High Mobility MoS2 Transistor with Low Schottky Barrier Contact by Using Atomic Thick h‐BN as a Tunneling Layer , 2016, Advanced materials.

[49]  R. Lieth Preparation and Crystal Growth of Materials with Layered Structures , 1977 .

[50]  F. Ren,et al.  Review of Graphene as a Solid State Diffusion Barrier. , 2016, Small.

[51]  Zhi-Xun Shen,et al.  HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-κ oxides , 2017, Science Advances.

[52]  Paul K. Hurley,et al.  Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2 , 2016 .

[53]  Amritesh Rai,et al.  Reconfigurable Complementary Monolayer MoTe2 Field-Effect Transistors for Integrated Circuits. , 2017, ACS nano.

[54]  J. Robertson,et al.  Chalcogen vacancies in monolayer transition metal dichalcogenides and Fermi level pinning at contacts , 2015 .

[55]  Kazuhito Tsukagoshi,et al.  Carrier Polarity Control in α-MoTe2 Schottky Junctions Based on Weak Fermi-Level Pinning. , 2016, ACS applied materials & interfaces.

[56]  Davood Shahrjerdi,et al.  High-performance air-stable n-type carbon nanotube transistors with erbium contacts. , 2013, ACS nano.

[57]  Claudia Ruppert,et al.  Optical properties and band gap of single- and few-layer MoTe2 crystals. , 2014, Nano letters.

[58]  P. Kim,et al.  Low-Temperature Ohmic Contact to Monolayer MoS2 by van der Waals Bonded Co/h-BN Electrodes. , 2017, Nano letters.

[59]  Environmental Instability and Degradation of Single- and Few-Layer WTe2 Nanosheets in Ambient Conditions. , 2016, Small.

[60]  Kenji Watanabe,et al.  van der Waals Bonded Co/h-BN Contacts to Ultrathin Black Phosphorus Devices. , 2017, Nano letters.

[61]  High Current Density and Low Thermal Conductivity of Atomically Thin Semimetallic WTe2. , 2016, ACS nano.

[62]  Ali Javey,et al.  MoS₂ P-type transistors and diodes enabled by high work function MoOx contacts. , 2014, Nano letters.

[63]  K. Tsukagoshi,et al.  Origin of Noise in Layered MoTe2 Transistors and its Possible Use for Environmental Sensors , 2015, Advanced materials.

[64]  Kazuhito Tsukagoshi,et al.  Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe₂. , 2014, ACS nano.

[65]  Faisal Ahmed,et al.  Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. , 2017, ACS nano.

[66]  S. Min,et al.  Non‐Lithographic Fabrication of All‐2D α‐MoTe2 Dual Gate Transistors , 2016 .

[67]  Kyeongjae Cho,et al.  Charge Mediated Reversible Metal-Insulator Transition in Monolayer MoTe2 and WxMo1-xTe2 Alloy. , 2016, ACS nano.

[68]  Metallization-induced damage in III–V semiconductors , 1998 .

[69]  Yuping Zeng,et al.  High-gain inverters based on WSe2 complementary field-effect transistors. , 2014, ACS nano.

[70]  Daihua Zhang,et al.  Contact Engineering of Molybdenum Ditelluride Field Effect Transistors through Rapid Thermal Annealing. , 2017, ACS applied materials & interfaces.

[71]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[72]  Universal Mechanism of Band-Gap Engineering in Transition-Metal Dichalcogenides. , 2017, Nano letters.

[73]  Seunghyun Lee,et al.  Statistical Study on the Schottky Barrier Reduction of Tunneling Contacts to CVD Synthesized MoS2. , 2016, Nano letters.

[74]  S. Qin,et al.  Engineering few-layer MoTe2 devices by Co/hBN tunnel contacts , 2018 .

[75]  Christopher M. Smyth,et al.  Contact Metal–MoS2 Interfacial Reactions and Potential Implications on MoS2-Based Device Performance , 2016 .

[76]  Kazuhito Tsukagoshi,et al.  Ambipolar MoTe2 Transistors and Their Applications in Logic Circuits , 2014, Advanced materials.

[77]  S. Jun,et al.  Static and Dynamic Performance of Complementary Inverters Based on Nanosheet α-MoTe2 p-Channel and MoS2 n-Channel Transistors. , 2016, ACS nano.

[78]  Huili Grace Xing,et al.  Exfoliated multilayer MoTe2 field-effect transistors , 2014 .

[79]  S. Koester,et al.  Multi-layer MoTe2 p-channel MOSFETs with high drive current , 2014, 72nd Device Research Conference.

[80]  M. Horn,et al.  Mobility Deception in Nanoscale Transistors: An Untold Contact Story , 2018, Advanced materials.

[81]  Moon J. Kim,et al.  Defects and Surface Structural Stability of MoTe2 Under Vacuum Annealing. , 2017, ACS nano.

[82]  Joerg Appenzeller,et al.  WSe2 field effect transistors with enhanced ambipolar characteristics , 2013 .

[83]  S. Im,et al.  Electric and Photovoltaic Behavior of a Few‐Layer α‐MoTe2/MoS2 Dichalcogenide Heterojunction , 2016, Advanced materials.

[84]  A. Herrera‐Gomez,et al.  Chemical depth profile of ultrathin nitrided SiO2 films , 2002 .