On the Use of Term Associations in Automatic Information Retrieval

It has been recognized that single words extracted from natural language texts are not always useful for the representation of information content. Associated or related terms. and comples content identifiers derived from thesauruses and knowledge bases, or constructed by automatic word grouping techniques, have therefore been proposed for text identification purposes.The area of associative content analysis and information retrievl is reviewed in this study. The available experimental evidence shows that none of the existing or proposed methodologies are guaranteed to improve retrieval performance in a replicable manner for document collections in different subject areas. The associative techniques are most valuable for restricted environments covering narrow subject areas, or in iterative search situations where user inputs are available to refine previously available query formulations and search output.

[1]  George R. Cross,et al.  COREL: a conceptual retrieval system , 1986, SIGIR '86.

[2]  Gerard Salton,et al.  Automatic Information Organization And Retrieval , 1968 .

[3]  Martin Dillon,et al.  FASIT: A fully automatic syntactically based indexing system , 1983, J. Am. Soc. Inf. Sci..

[4]  Edward A. Fox,et al.  Advanced feedback methods in information retrieval , 1985, J. Am. Soc. Inf. Sci..

[5]  Michael E. Lesk,et al.  Computer Evaluation of Indexing and Text Processing , 1968, JACM.

[6]  C. J. van Rijsbergen,et al.  An Evaluation of feedback in Document Retrieval using Co‐Occurrence Data , 1978, J. Documentation.

[7]  Barbara J. Grosz,et al.  Natural-Language Processing , 1982, Artificial Intelligence.

[8]  Patrick Henry Winston,et al.  The psychology of computer vision , 1976, Pattern Recognit..

[9]  Gerard Salton,et al.  The SMART Retrieval System , 1971 .

[10]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[11]  Michael Lesk,et al.  Word-word associations in document retrieval systems , 1969 .

[12]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[13]  Karen Spärck Jones,et al.  Automatic Search Term variant Generation , 1984, J. Documentation.

[14]  Stephen E. Robertson,et al.  Probabilistic models of indexing and searching , 1980, SIGIR '80.

[15]  Alan F. Smeaton,et al.  Incorporating syntactic information into a document retrieval strategy: an investigation , 1986, SIGIR '86.

[16]  Lauren B. Doyle,et al.  Semantic Road Maps for Literature Searchers , 1961, JACM.

[17]  Chris D. Paice,et al.  The calculation of similarities between multi-word strings using a thesaurus , 1985, RIAO.

[18]  Jaime G. Carbonell,et al.  A tutorial on techniques and applications for natural language processing , 1983 .

[19]  W. Bruce Croft User-specified domain knowledge for document retrieval , 1986, SIGIR '86.

[20]  Ronald J. Brachman,et al.  Special issue on knowledge representation , 1980, SGAR.

[21]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[22]  Mary Elizabeth Stevens,et al.  Automatic indexing : a state-of-the art report , 1965 .