A polygonal approach for interpolating meshes of curves by subdivision surfaces

Given a polyhedral network P/sub 0/ defining a subdivision surface S and an arbitrary mesh of tagged control polygons (cp/sub i/)/sub 1⩽i⩽n/ on P/sub 0/, this paper describes an approach to force the limit surface S to interpolate the B-spline curves of (cp/sub i/). For each control polygon cp/sub i/, we construct a polygonal complex whose mid-polygon is cp/sub i/ or its first subdivided one. A polygonal complex is a sequence of panels such that every two adjacent panels share exactly one edge and the mid-points of these edges make the mid-polygon of the complex. Since the complexes themselves are embodied in the original polyhedron or its first subdivided the limit surface will interpolate the limit curves of these complexes.

[1]  Adi Levin,et al.  Interpolating nets of curves by smooth subdivision surfaces , 1999, SIGGRAPH.

[2]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[3]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[4]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[5]  Ahmad H. Nasri,et al.  Interpolating meshes of boundary intersecting curves by subdivision surfaces , 2000, The Visual Computer.

[6]  Jörg Peters,et al.  The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.

[7]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[8]  Charles T. Loop,et al.  Smooth spline surfaces over irregular meshes , 1994, SIGGRAPH.

[9]  A. A. Ball,et al.  Recursively generated B-spline surfaces , 1984 .

[10]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[11]  John A. Gregory,et al.  Nonuniform corner cutting , 1996, Comput. Aided Geom. Des..

[12]  Ahmad H. Nasri,et al.  Surface interpolation on irregular networks with normal conditions , 1991, Comput. Aided Geom. Des..

[13]  Joe D. Warren,et al.  Subdivision schemes for fluid flow , 1999, SIGGRAPH.

[14]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[15]  D. Levin,et al.  Interpolating Subdivision Schemes for the Generation of Curves and Surfaces , 1990 .

[16]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[17]  Ahmad H. Nasri,et al.  Polyhedral subdivision methods for free-form surfaces , 1987, TOGS.

[18]  Ahmad H. Nasri,et al.  Recursive subdivision of polygonal complexes and its applications in computer-aided geometric design , 2000, Comput. Aided Geom. Des..

[19]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[20]  Hartmut Prautzsch,et al.  Analysis of Ck-subdivision surfaces at extraordinary points , 1995 .

[21]  J. Clark,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[22]  Ahmad H. Nasri,et al.  Curve interpolation in recursively generated B-spline surfaces over arbitrary topology , 1997, Comput. Aided Geom. Des..

[23]  Malcolm A. Sabin,et al.  Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.

[24]  Ayman Habib,et al.  Edge and vertex insertion for a class of C1 subdivision surfaces , 1999, Comput. Aided Geom. Des..