Learning local shape descriptors for computing non-rigid dense correspondence

A discriminative local shape descriptor plays an important role in various applications. In this paper, we present a novel deep learning framework that derives discriminative local descriptors for deformable 3D shapes. We use local “geometry images” to encode the multi-scale local features of a point, via an intrinsic parameterization method based on geodesic polar coordinates. This new parameterization provides robust geometry images even for badly-shaped triangular meshes. Then a triplet network with shared architecture and parameters is used to perform deep metric learning; its aim is to distinguish between similar and dissimilar pairs of points. Additionally, a newly designed triplet loss function is minimized for improved, accurate training of the triplet network. To solve the dense correspondence problem, an efficient sampling approach is utilized to achieve a good compromise between training performance and descriptor quality. During testing, given a geometry image of a point of interest, our network outputs a discriminative local descriptor for it. Extensive testing of non-rigid dense shape matching on a variety of benchmarks demonstrates the superiority of the proposed descriptors over the state-of-the-art alternatives.

[1]  Qi Tian,et al.  GIFT: Towards Scalable 3D Shape Retrieval , 2017, IEEE Transactions on Multimedia.

[2]  Ruigang Yang,et al.  Semantic Parametric Reshaping of Human Body Models , 2014, 2014 2nd International Conference on 3D Vision.

[3]  Ersin Yumer,et al.  Learning Local Shape Descriptors from Part Correspondences with Multiview Convolutional Networks , 2017, ACM Trans. Graph..

[4]  Matthias Nießner,et al.  3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Pierre Vandergheynst,et al.  Learning class‐specific descriptors for deformable shapes using localized spectral convolutional networks , 2015, SGP '15.

[6]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[7]  James Philbin,et al.  FaceNet: A unified embedding for face recognition and clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Yang Song,et al.  Learning Fine-Grained Image Similarity with Deep Ranking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Benjamin Bustos,et al.  Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes , 2011, The Visual Computer.

[10]  Sebastian Thrun,et al.  SCAPE: shape completion and animation of people , 2005, SIGGRAPH '05.

[11]  C. Qi Deep Learning on Point Sets for 3 D Classification and Segmentation , 2016 .

[12]  R. Horaud,et al.  Surface feature detection and description with applications to mesh matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[14]  Daniel Cremers,et al.  Partial Matching of Deformable Shapes , 2016, 3DOR@Eurographics.

[15]  Mohammed Bennamoun,et al.  Rotational Projection Statistics for 3D Local Surface Description and Object Recognition , 2013, International Journal of Computer Vision.

[16]  Daniel Cremers,et al.  Anisotropic Diffusion Descriptors , 2016, Comput. Graph. Forum.

[17]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[18]  Qi-Xing Huang,et al.  Dense Human Body Correspondences Using Convolutional Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Xavier Bresson,et al.  Functional correspondence by matrix completion , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[21]  Martin Reimers,et al.  Geodesic Polar Coordinates on Polygonal Meshes , 2012, Comput. Graph. Forum.

[22]  Dong-Ming Yan,et al.  A Robust Local Spectral Descriptor for Matching Non-Rigid Shapes With Incompatible Shape Structures , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Daniel Cremers,et al.  Product Manifold Filter: Non-rigid Shape Correspondence via Kernel Density Estimation in the Product Space , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[25]  Leonidas J. Guibas,et al.  Computing and processing correspondences with functional maps , 2016, SIGGRAPH Courses.

[26]  Mohammed Bennamoun,et al.  3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Gustavo Carneiro,et al.  Learning Local Image Descriptors with Deep Siamese and Triplet Convolutional Networks by Minimizing Global Loss Functions , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Iasonas Kokkinos,et al.  Intrinsic shape context descriptors for deformable shapes , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Maks Ovsjanikov,et al.  Informative Descriptor Preservation via Commutativity for Shape Matching , 2017, Comput. Graph. Forum.

[30]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Jonathan Masci,et al.  Palmprint recognition via discriminative index learning , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[32]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Jonathan Masci,et al.  Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Jianwei Guo,et al.  Learning 3D Keypoint Descriptors for Non-rigid Shape Matching , 2018, ECCV.

[35]  Pierre Vandergheynst,et al.  Geodesic Convolutional Neural Networks on Riemannian Manifolds , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[36]  Michael J. Black,et al.  FAUST: Dataset and Evaluation for 3D Mesh Registration , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Maks Ovsjanikov,et al.  Supervised Descriptor Learning for Non-Rigid Shape Matching , 2014, ECCV Workshops.

[38]  Leonidas J. Guibas,et al.  An optimization approach for extracting and encoding consistent maps in a shape collection , 2012, ACM Trans. Graph..

[39]  Mohammed Bennamoun,et al.  A novel 3D vorticity based approach for automatic registration of low resolution range images , 2015, Pattern Recognit..

[40]  Paul Suetens,et al.  A comparison of methods for non-rigid 3D shape retrieval , 2013, Pattern Recognit..

[41]  Vladlen Koltun,et al.  Learning Compact Geometric Features , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[42]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[43]  A. Bronstein,et al.  Learning Spectral Descriptors for Deformable Shape Correspondence , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Alexander M. Bronstein,et al.  Recent Trends, Applications, and Perspectives in 3D Shape Similarity Assessment , 2016, Comput. Graph. Forum.

[45]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Daniel Cohen-Or,et al.  Salient geometric features for partial shape matching and similarity , 2006, TOGS.

[47]  Tobias Gurdan Sparse Modeling of Intrinsic Correspondences , 2014 .

[48]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[49]  M. Bronstein,et al.  SHREC’16: Partial Matching of Deformable Shapes , 2016 .

[50]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[51]  Daniel Cremers,et al.  Dense Non-rigid Shape Correspondence Using Random Forests , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[53]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[55]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[56]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..

[57]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.

[58]  Alexander M. Bronstein,et al.  In the Rigid Kingdom , 2008 .

[59]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[60]  Alexander M. Bronstein,et al.  Deep Functional Maps: Structured Prediction for Dense Shape Correspondence , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[61]  Vladlen Koltun,et al.  Robust Nonrigid Registration by Convex Optimization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[62]  Lin Gao,et al.  Active Exploration of Large 3D Model Repositories , 2015, IEEE Transactions on Visualization and Computer Graphics.

[63]  Mohammed Bennamoun,et al.  A Comprehensive Performance Evaluation of 3D Local Feature Descriptors , 2015, International Journal of Computer Vision.

[64]  Karthik Ramani,et al.  Deep Learning 3D Shape Surfaces Using Geometry Images , 2016, ECCV.

[65]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[66]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[67]  Xiaohong Jia,et al.  Blue‐Noise Remeshing with Farthest Point Optimization , 2014, Comput. Graph. Forum.

[68]  Jonathan Masci,et al.  Learning shape correspondence with anisotropic convolutional neural networks , 2016, NIPS.