Extension of ISOMAP for Imperfect Manifolds
暂无分享,去创建一个
[1] Chao Shao,et al. A SOM-Based Method for Manifold Learning and Visualization , 2009, 2009 International Joint Conference on Computational Sciences and Optimization.
[2] Chao Shao. A More Topologically Stable ISOMAP Algorithm , 2007 .
[3] Mukund Balasubramanian,et al. The Isomap Algorithm and Topological Stability , 2002, Science.
[4] Vin de Silva,et al. Unsupervised Learning of Curved Manifolds , 2003 .
[5] Alfred Inselberg,et al. Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.
[6] Michel Verleysen,et al. Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis , 2004, Neurocomputing.
[7] Golan Yona,et al. Distributional Scaling: An Algorithm for Structure-Preserving Embedding of Metric and Nonmetric Spaces , 2004, J. Mach. Learn. Res..
[8] David G. Stork,et al. Pattern Classification , 1973 .
[9] Mikhail Belkin,et al. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.
[10] Dimitrios Gunopulos,et al. Non-linear dimensionality reduction techniques for classification and visualization , 2002, KDD.
[11] Michael W. Trosset,et al. Extensions of Classical Multidimensional Scaling via Variable Reduction , 2002, Comput. Stat..
[12] Georges G. Grinstein,et al. Iconographic Displays For Visualizing Multidimensional Data , 1988, Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics.
[13] Matthew O. Ward,et al. XmdvTool: integrating multiple methods for visualizing multivariate data , 1994, Proceedings Visualization '94.
[14] Antoine Naud. INTERACTIVE DATA EXPLORATION USING MDS MAPPING , 2000 .
[15] J. Tenenbaum,et al. A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.
[16] Daniel A. Keim,et al. Designing Pixel-Oriented Visualization Techniques: Theory and Applications , 2000, IEEE Trans. Vis. Comput. Graph..
[17] Li Yang,et al. Distance-Preserving Projection of High-Dimensional Data for Nonlinear Dimensionality Reduction , 2004, IEEE Trans. Pattern Anal. Mach. Intell..
[18] Hujun Yin,et al. Nonlinear Multidimensional Data Projection and Visualisation , 2003, IDEAL.
[19] Ben Shneiderman,et al. Tree visualization with tree-maps: 2-d space-filling approach , 1992, TOGS.
[20] Eser Kandogan,et al. Visualizing multi-dimensional clusters, trends, and outliers using star coordinates , 2001, KDD '01.
[21] S T Roweis,et al. Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.
[22] Matthew O. Ward,et al. Exploring N-dimensional databases , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.
[23] D. Donoho,et al. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[24] I. Hassan. Embedded , 2005, The Cyber Security Handbook.
[25] Matti Pietikäinen,et al. Efficient Locally Linear Embeddings of Imperfect Manifolds , 2003, MLDM.