What Macroeconomists Should Know about Unit Roots: A Bayesian Perspective

This paper summarizes recent Bayesian research on unit roots for the applied macroeconomist in the way Campbell and Perron [8] summarized the classical unit roots perspective. The appropriate choice of a prior is discussed. In recognizing a consensus distaste for explosive roots, I find the popular Normal-Wishart priors centered at the unit root to be reasonable provided they are modified by concentrating the prior mass for the time trend coefficient toward zero as the largest root approaches unit from below. I discuss that the tails of the predictive density can be sensitive to the prior treatment of explosive roots. Because the focus of an investigation often is on a particular persistence property or medium-term forecasting property of the data, I conclude that Bayesian methods often deliver natural answers to macroeconomic questions.

[1]  Peter C. B. Phillips,et al.  Bayesian model selection and prediction with empirical applications , 1995 .

[2]  M. Steel,et al.  Bayesian long-run prediction in time series models , 1995 .

[3]  Herman K. van Dijk,et al.  On the Shape of the Likelihood/Posterior in Cointegration Models , 1994, Econometric Theory.

[4]  Peter C. B. Phillips,et al.  Posterior Odds Testing for a Unit Root with Data-Based Model Selection , 1994, Econometric Theory.

[5]  R. McCulloch,et al.  Bayesian Inference of Trend and Difference-Stationarity , 1994, Econometric Theory.

[6]  Harald Uhlig,et al.  On Jeffreys Prior when Using the Exact Likelihood Function , 1994, Econometric Theory.

[7]  Eric Zivot,et al.  A Bayesian Analysis Of The Unit Root Hypothesis Within An Unobserved Components Model , 1994, Econometric Theory.

[8]  C. Whiteman,et al.  Modeling Stock Prices without Knowing How to Induce Stationarity , 1994, Econometric Theory.

[9]  J. Geweke,et al.  Priors for Macroeconomic Time Series and Their Application , 1994, Econometric Theory.

[10]  David N. DeJong,et al.  The forecasting attributes of trend‐ and difference‐stationary representations for macroeconomic time series , 1994 .

[11]  A. Zellner Time‐series analysis, forecasting and econometric modelling: The structural econometric modelling, time‐series analysis (SEMTSA) approach , 1994 .

[12]  Eric Zivot,et al.  A Bayesian Analysis of Trend Determination in Economic Time Series , 1994 .

[13]  M. Steel,et al.  A Decision-Theoretic Analysis of the Unit-Root Hypothesis Using Mixtures of Elliptical Models , 1994 .

[14]  Arnold Zellner,et al.  Physics and Probability: Bayesian Analysis, Model Selection and Prediction , 1993 .

[15]  C. Sims A nine variable probabilistic macroeconomic forecasting model , 1993 .

[16]  D. Andrews Exactly Median-Unbiased Estimation of First Order Autoregressive/Unit Root Models , 1993 .

[17]  H. V. Dijk,et al.  POSTERIOR ANALYSIS OF POSSIBLY INTEGRATED TIME SERIES WITH AN APPLICATION TO REAL GNP , 1993 .

[18]  G. C. Tiao,et al.  An introduction to multiple time series analysis. , 1993, Medical care.

[19]  Gary Koop,et al.  Aggregate Shocks and Macroeconomic Fluctuations: A Bayesian Approach , 1992 .

[20]  P. Phillips Bayes Methods for Trending Multiple Time Series with an Empirical Application to the US Economy , 1992 .

[21]  Peter C. B. Phillips,et al.  Bayes Models and Forecasts of Australian Macroeconomic Time Series , 1992 .

[22]  M. Steel,et al.  Posterior inference on long-run impulse responses , 1992 .

[23]  D. N. DeJong,et al.  Co-integration and trend-stationarity in macroeconomic time series: Evidence from the likelihood function , 1992 .

[24]  D. N. DeJong,et al.  Integration versus Trend Stationarity in Time Series , 1992 .

[25]  Gary Koop,et al.  ‘Objective’ bayesian unit root tests , 1992 .

[26]  Harald Uhlig,et al.  Understanding unit rooters: a helicopter tour , 1991 .

[27]  David N. DeJong,et al.  The case for trend‐stationarity is stronger than we thought , 1991 .

[28]  Peter C. B. Phillips,et al.  To Criticize the Critics: An Objective Bayesian Analysis of Stochastic Trends , 1991 .

[29]  David N. DeJong,et al.  Reconsidering 'Trends and random walks in macroeconomic time series' * , 1991 .

[30]  M. Steel,et al.  A comment on: ‘To criticize the critics: An objective bayesian analysis of stochastic trends’, By Peter C. B. Phillips , 1991 .

[31]  Edward Leamer To Criticize the Critics: An Objective Bayesian Analysis of Stochastic Trends: Comment , 1991 .

[32]  Dale J. Poirier,et al.  A comment on ‘To criticize the critics: An objective bayesian analysis of stochastic trends’ , 1991 .

[33]  C. Sims Comment by Christopher A. Sims on ‘to criticize the critics’, by Peter C. B. Phillips , 1991 .

[34]  Peter C. B. Phillips Bayesian Routes and Unit Roots: de rebus prioribus semper est disputandum , 1991 .

[35]  Flat priors vs. ignorance priors in the analysis of the AR(1) model , 1991 .

[36]  James H. Stock,et al.  Bayesian approaches to the ‘unit root’ problem: A comment , 1991 .

[37]  R. Fair Estimating Event Probabilities from Macroeconomic Models Using Stochastic Simulation , 1991 .

[38]  C. Sims Comment on 'To Criticize the Critics,' by Peter C. B. Phillips , 1991 .

[39]  H. V. Dijk,et al.  A Bayesian analysis of the unit root in real exchange rates , 1991 .

[40]  Edward C. Prescott,et al.  The Econometrics of the General Equilibrium Approach to Business Cycles , 1991 .

[41]  Danny Quah,et al.  The Relative Importance of Permanent and Transitory Components: Identi- Fication and Some Theoretical Bounds , 1991 .

[42]  P. Phillips,et al.  Time Series Modelling with a Bayesian Frame of Reference: 1. Concepts and Illustrations , 1991 .

[43]  John H. Cochrane,et al.  A critique of the application of unit root tests , 1991 .

[44]  M. Lubrano Testing for Unit Roots Cointegration in a Bayesian Framework , 1991 .

[45]  C. Whiteman,et al.  The Temporal Stability of Dividends and Stock Prices: Evidence from the Likelihood Function , 1991 .

[46]  Herman K. van Dijk,et al.  On Bayesian routes to unit roots , 1991 .

[47]  Arnold Zellner,et al.  Bayesian Methods and Entropy in Economics and Econometrics , 1991 .

[48]  W. T. Grandy,et al.  Maximum Entropy and Bayesian Methods , 1991 .

[49]  Michael Sampson,et al.  The Effect of Parameter Uncertainty on Forecast Variances and Confidence Intervals for Unit Root and Trend Stationary Time-Series Models , 1991 .

[50]  M. Shubik,et al.  COWLES FOUNDATION FOR RESEARCH IN ECONOMICS , 1991 .

[51]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[52]  M. Wickens,et al.  A Survey of Some Recent Econometric Methods , 1989 .

[53]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[54]  Martin Eichenbaum,et al.  Unit Roots in Real Gnp: Do We Know, and Do We Care? , 1989 .

[55]  John Skilling,et al.  Maximum Entropy and Bayesian Methods , 1989 .

[56]  C. Sims,et al.  Output Persistence, Economic Structure, and the Choice of Stabilization Policy , 1989 .

[57]  Peter C. B. Phillips,et al.  Reflections on econometric methodology , 1988 .

[58]  John H. Cochrane,et al.  How Big Is the Random Walk in GNP? , 1988, Journal of Political Economy.

[59]  C. Sims Bayesian skepticism on unit root econometrics , 1988 .

[60]  J. C. Naylor,et al.  Econometric illustrations of novel numerical integration strategies for Bayesian inference , 1988 .

[61]  J. Geweke,et al.  Antithetic acceleration of Monte Carlo integration in Bayesian inference , 1988 .

[62]  J. Richard,et al.  Econometrics and Structural Change. , 1988 .

[63]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[64]  D. Poirier Frequentist and Subjectivist Perspectives on the Problems of Model Building in Economics , 1988 .

[65]  D. Poirier The Subjectivist Response , 1988 .

[66]  Adrian Pagan Comment on Poirier: Dogma or Doubt? , 1988 .

[67]  J. Geweke Comment on Poirer: Operational Bayesian Methods in Econometrics , 1988 .

[68]  John Rust Comment on Poirer: The Subjective Perspective of a "Spiritual Bayesian" , 1988 .

[69]  Arnold Zellner,et al.  Bayesian analysis in econometrics , 1988 .

[70]  Adrian Pagan,et al.  Three Econometric Methodologies: A Critical Appraisal , 1987 .

[71]  C. Sims,et al.  Making economics credible , 1987 .

[72]  C. Sims Are forecasting models usable for policy analysis , 1986 .

[73]  G. Judge,et al.  The Theory and Practice of Econometrics (2nd ed.). , 1986 .

[74]  Mark W. Watson,et al.  Univariate detrending methods with stochastic trends , 1986 .

[75]  John Y. Campbell,et al.  Are Output Fluctuations Transitory? , 1986 .

[76]  Edward E. Leamer,et al.  Sensitivity Analyses Would Help , 1985 .

[77]  Robert B. Litterman Forecasting and policy analysis with Bayesian vector autoregression models , 1984 .

[78]  Robert B. Litterman Forecasting with Bayesian Vector Autoregressions-Five Years of Experience , 1984 .

[79]  Robert B. Litterman,et al.  Specifying vector autoregressions for macroeconomic forecasting , 1984 .

[80]  Robert B. Litterman,et al.  Forecasting and Conditional Projection Using Realistic Prior Distributions , 1983 .

[81]  Edward E. Leamer,et al.  Let's Take the Con Out of Econometrics , 1983 .

[82]  David F. Hendry,et al.  On the Formulation of Empirical-models in Dynamic Econometrics , 1982 .

[83]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[84]  Tsoung-Chao Lee,et al.  The Theory and Practice of Econometrics , 1981 .

[85]  Robert B. Litterman Techniques of forecasting using vector autoregressions , 1979 .

[86]  Ahmet Aykac,et al.  New developments in the applications of Bayesian methods : proceedings of the First European Conference sponsored by the Centre européen d'education permanente (CEDEP) and the Institut européen d'administration des affaires (INSEAD), June 1976 , 1977 .

[87]  T. Kloek,et al.  Bayesian estimates of equation system parameters, An application of integration by Monte Carlo , 1976 .

[88]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[89]  G. Chow,et al.  MULTIPERIOD PREDICTIONS FROM STOCHASTIC DIFFERENCE EQUATIONS BY BAYESIAN METHODS , 1973 .

[90]  Christopher A. Sims,et al.  The Role of Approximate Prior Restrictions in Distributed Lag Estimation , 1972 .

[91]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[92]  H. Thornber Finite Sample Monte Carlo Studies: An Autoregressive Illustration , 1967 .

[93]  T. Eliot,et al.  To Criticize the Critic , 1965 .

[94]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[95]  H. Jeffreys The Theory of Probability , 1896 .