Real-Time Synthesis is Hard!

We study the reactive synthesis problem (RS) for specifications given in Metric Interval Temporal Logic (MITL). RS is known to be undecidable in a very general setting, but on infinite words only; and only the very restrictive BResRS subcase is known to be decidable (see D'Souza et al. and Bouyer et al.). In this paper, we precise the decidabil-ity border of MITL synthesis. We show RS is undecidable on finite words too, and present a landscape of restrictions (both on the logic and on the possible controllers) that are still undecidable. On the positive side, we revisit BResRS and introduce an efficient on-the-fly algorithm to solve it.

[1]  Joël Ouaknine,et al.  Universality and Language Inclusion for Open and Closed Timed Automata , 2003, HSCC.

[2]  Kim G. Larsen,et al.  Efficient On-the-Fly Algorithms for the Analysis of Timed Games , 2005, CONCUR.

[3]  Pierre-Yves Schobbens,et al.  Fully decidable logics, automata and classical theories for defining regular real-time languages , 1999 .

[4]  Thomas A. Henzinger,et al.  The Element of Surprise in Timed Games , 2003, CONCUR.

[5]  Joël Ouaknine,et al.  Safety Metric Temporal Logic Is Fully Decidable , 2006, TACAS.

[6]  Thomas A. Henzinger,et al.  The benefits of relaxing punctuality , 1991, PODC '91.

[7]  Ron Koymans,et al.  Specifying real-time properties with metric temporal logic , 1990, Real-Time Systems.

[8]  Joël Ouaknine,et al.  The Cost of Punctuality , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[9]  P. Madhusudan,et al.  Timed Control Synthesis for External Specifications , 2002, STACS.

[10]  Morgane Estiévenart Verification and synthesis of MITL through alternating timed automata , 2015 .

[11]  Joël Ouaknine,et al.  On the decidability and complexity of Metric Temporal Logic over finite words , 2007, Log. Methods Comput. Sci..

[12]  Kim G. Larsen,et al.  Efficient controller synthesis for a fragment of $$\hbox {MTL}_{0, \infty }$$MTL0,∞ , 2013, Acta Informatica.

[13]  Daniel Brand,et al.  On Communicating Finite-State Machines , 1983, JACM.

[14]  Jean-François Raskin,et al.  An Antichain Algorithm for LTL Realizability , 2009, CAV.

[15]  Thomas Brihaye,et al.  On MITL and Alternating Timed Automata , 2013, FORMATS.

[16]  Krishnendu Chatterjee,et al.  Algorithms for Omega-Regular Games with Imperfect Information , 2006, Log. Methods Comput. Sci..

[17]  Patricia Bouyer,et al.  Controller Synthesis for MTL Specifications , 2006, CONCUR.

[18]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[19]  Véronique Bruyère,et al.  Acacia+, a Tool for LTL Synthesis , 2012, CAV.

[20]  A. Pnueli,et al.  On the Synthesis of an Asynchronous Reactive Module , 1989, ICALP.

[21]  KoymansRon Specifying real-time properties with metric temporal logic , 1990 .

[22]  Jean-François Raskin,et al.  Realizability of Real-Time Logics , 2009, FORMATS.