Practical maximum pseudolikelihood for spatial point patterns

We describe a technique for computing approximate maximum pseudolikelihood estimates of the parameters of a spatial point process. The method is an extension of Berman and Turner’s device [1] for maximising the likelihoods of inhomogeneous spatial Poisson processes. For a very wide class of spatial point process models, the likelihood is intractable, while the pseudolikelihood [2, 3] is known explicitly, except for the computation of an integral over the sampling region. Approximating this integral by a finite sum yields an approximate pseudolikelihood which is formally equivalent to the likelihood of a loglinear model with Poisson responses. This can be maximised using standard statistical software for generalised linear or additive models, provided the conditional intensity of the process takes an ‘exponential family’ form. Using this approach, we are able to fit rapidly a wide variety of spatial point process models of Gibbs type, incorporating spatial trends, interaction between points, dependence on spatial covariates, and mark information.

[1]  Peter J. Diggle,et al.  Statistical analysis of spatial point patterns , 1983 .

[2]  Eva B. Vedel Jensen,et al.  Inhomogeneous Markov point processes by transformation , 2000 .

[3]  J. R. Koehler,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[4]  M. Berman Testing for spatial association between a point process and another stochastic process , 1986 .

[5]  P. Diggle,et al.  On parameter estimation for pairwise interaction point processes , 1994 .

[6]  Y. Ogata,et al.  Estimation of interaction potentials of spatial point patterns through the maximum likelihood procedure , 1981 .

[7]  James Lindsey Fitting Bivariate Intensity Functions, with an Application to Modelling Delays in Reporting Acquired Immune Deficiency Syndrome , 1996 .

[8]  J. Lindsey,et al.  Fitting and comparing probability distributions with log linear models , 1992 .

[9]  Thomas Fiksel,et al.  Estimation of Parametrized Pair Potentials of Marked and Non-marked Gibbsian Point Processes , 1984, J. Inf. Process. Cybern..

[10]  J. Cuzick,et al.  Spatial clustering for inhomogeneous populations , 1990 .

[11]  Mark Berman,et al.  Approximating point process likelihoods with GLIM. , 1993 .

[12]  Olav Kallenberg,et al.  An Informal Guide to the Theory of Conditioning in Point Processes , 1984 .

[13]  James K. Lindsey,et al.  The Analysis of Stochastic Processes using GLIM , 1992 .

[14]  A. Baddeley,et al.  Area-interaction point processes , 1993 .

[15]  Aila Särkkä,et al.  Parameter Estimation for Marked Gibbs Point Processes Through the Maximum Pseudo-likelihood Method , 1996 .

[16]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[17]  J. L. Jensen,et al.  Pseudolikelihood for Exponential Family Models of Spatial Point Processes , 1991 .

[18]  Valerie Isham,et al.  A Bivariate Spatial Point Pattern of Ants' Nests , 1983 .

[19]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[20]  Lokale Energien und Potentiale für Punktprozesse , 1980 .

[21]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[22]  B. Ripley Modelling Spatial Patterns , 1977 .

[23]  T. Fiksel Estimation of interaction potentials of gibbsian point processes , 1988 .

[24]  J. Besag,et al.  Point process limits of lattice processes , 1982, Journal of Applied Probability.

[25]  F. Kelly,et al.  A note on Strauss's model for clustering , 1976 .

[26]  H. Künsch,et al.  On asymptotic normality of pseudo likelihood estimates for pairwise interaction processes , 1994, Annals of the Institute of Statistical Mathematics.

[27]  R. Takacs,et al.  Interaction Pair-potentials for a System of Ant's Nests , 1986 .

[28]  C. Geyer,et al.  Simulation Procedures and Likelihood Inference for Spatial Point Processes , 1994 .

[29]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[30]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[31]  B. Ripley Statistical inference for spatial processes , 1990 .

[32]  Harri HöUgmander,et al.  Multitype Spatial Point Patterns with Hierarchical Interactions , 1999 .

[33]  A. Baddeley,et al.  Nearest-Neighbour Markov Point Processes and Random Sets , 1989 .

[34]  D. J. Strauss A model for clustering , 1975 .

[35]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[36]  O. Kallenberg Random Measures , 1983 .

[37]  James Lindsey,et al.  Fitting Parametric Counting Processes by using Log-linear Models , 1995 .

[38]  Trevor Hastie,et al.  Statistical Models in S , 1991 .

[39]  Y. Ogata,et al.  Estimation of Interaction Potentials of Marked Spatial Point Patterns Through the Maximum Likelihood Method , 1985 .

[40]  M. A. Tanner,et al.  Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, 3rd Edition , 1998 .

[41]  John S. Rowlinson,et al.  New Model for the Study of Liquid–Vapor Phase Transitions , 1970 .

[42]  Y. Ogata,et al.  Likelihood Analysis of Spatial Point Patterns , 1984 .

[43]  R. Takacs Estimator for the pair–potential of a gibbsian point process , 1986 .

[44]  MATHEMATISCHE NACHRICHTEN , 1952, Über Stammfaktoren bei ternären quadratischen Formen.

[45]  Valerie Isham,et al.  Multitype Markov point processes: some approximations , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[46]  John Hinde,et al.  Statistical Modelling in GLIM. , 1990 .