Contributions of the Pre- and Pro-Regions of a Staphylococcus hyicus Lipase to Secretion of a Heterologous Protein by Bacillus subtilis

ABSTRACT Bacillus subtilis is a well-established cell factory for efficient secretion of many biotechnologically relevant enzymes that are naturally produced by it or related organisms. However, the use of B. subtilis as a host for production of heterologous secretory proteins can be complicated by problems related to inefficient translocation of the foreign proteins across the plasma membrane or to inefficient release of the exported proteins from the cell surface into the surrounding medium. Therefore, there is a clear need for tools that allow more efficient membrane targeting, translocation, and release during the production of these proteins. In the present study, we investigated the contributions of the pre (prelip) and pro (prolip) sequences of a Staphylococcus hyicus lipase to secretion of a heterologous protein, the alkaline phosphatase PhoA of Escherichia coli, by B. subtilis. The results indicate that the presence of the prolip-peptide, in combination with the lipase signal peptide (prelip), contributes significantly to the efficient secretion of PhoA by B. subtilis and that prelip directs PhoA secretion more efficiently than the authentic signal peptide of PhoA. Genome-wide transcriptional analyses of the host cell responses indicate that, under the conditions tested, no known secretion or membrane-cell wall stress responses were provoked by the production of PhoA with any of the pre- and pro-region sequences used. Our data underscore the view that the pre-pro signals of the S. hyicus lipase are very useful tools for secretion of heterologous proteins in B. subtilis.

[1]  J. Dubois,et al.  Immunity to the Bacteriocin Sublancin 168 Is Determined by the SunI (YolF) Protein of Bacillus subtilis , 2008, Antimicrobial Agents and Chemotherapy.

[2]  J. Dubois,et al.  Modulation of Thiol-Disulfide Oxidoreductases for Increased Production of Disulfide-Bond-Containing Proteins in Bacillus subtilis , 2008, Applied and Environmental Microbiology.

[3]  C. Harwood,et al.  Bacillus protein secretion: an unfolding story. , 2008, Trends in microbiology.

[4]  Andrzej T. Lulko,et al.  Production and Secretion Stress Caused by Overexpression of Heterologous α-Amylase Leads to Inhibition of Sporulation and a Prolonged Motile Phase in Bacillus subtilis , 2007, Applied and Environmental Microbiology.

[5]  J. Dubois,et al.  Thiol‐disulphide oxidoreductase modules in the low‐GC Gram‐positive bacteria , 2007, Molecular microbiology.

[6]  J. Dubois,et al.  A Disulfide Bond-Containing Alkaline Phosphatase Triggers a BdbC-Dependent Secretion Stress Response in Bacillus subtilis , 2006, Applied and Environmental Microbiology.

[7]  T. Noll,et al.  Systematic screening of all signal peptides from Bacillus subtilis: a powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria. , 2006, Journal of molecular biology.

[8]  M. Hecker,et al.  Involvement of Bacillus subtilis ClpE in CtsR Degradation and Protein Quality Control , 2006, Journal of bacteriology.

[9]  S. Bron,et al.  Post-translocational folding of secretory proteins in Gram-positive bacteria. , 2004, Biochimica et biophysica acta.

[10]  Oscar P. Kuipers,et al.  Proteomics of Protein Secretion by Bacillus subtilis: Separating the “Secrets” of the Secretome , 2004, Microbiology and Molecular Biology Reviews.

[11]  Nicola Zamboni,et al.  Genome engineering reveals large dispensable regions in Bacillus subtilis. , 2003, Molecular biology and evolution.

[12]  M. Hecker,et al.  The extracellular proteome of Bacillus subtilis under secretion stress conditions , 2003, Molecular microbiology.

[13]  S. Bron,et al.  Complementary Impact of Paralogous Oxa1-like Proteins of Bacillus subtilis on Post-translocational Stages in Protein Secretion* , 2003, The Journal of Biological Chemistry.

[14]  D. Weuster‐Botz,et al.  Production of a human calcitonin precursor with Staphylococcus carnosus: secretory expression and single-step recovery by expanded bed adsorption , 2003 .

[15]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Jan Maarten van Dijl,et al.  A Novel Class of Heat and Secretion Stress-Responsive Genes Is Controlled by the Autoregulated CssRS Two-Component System of Bacillus subtilis , 2002, Journal of bacteriology.

[17]  U. Alon,et al.  Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Min Cao,et al.  Defining the Bacillus subtilis sigma(W) regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. , 2002, Journal of molecular biology.

[19]  M. Inouye,et al.  Functional analysis of the propeptides of subtilisin E and aqualysin I as intramolecular chaperones , 2001, FEBS letters.

[20]  S. Bron,et al.  A novel two‐component regulatory system in Bacillus subtilis for the survival of severe secretion stress , 2001, Molecular microbiology.

[21]  Jan Maarten van Dijl,et al.  A proteomic view on genome-based signal peptide predictions. , 2001, Genome research.

[22]  A. Driessen,et al.  Translocation of proteins across the cell envelope of Gram-positive bacteria. , 2001, FEMS microbiology reviews.

[23]  A. Peschel,et al.  Secretion of human growth hormone by the food-grade bacterium Staphylococcus carnosus requires a propeptide irrespective of the signal peptide used , 2001, Archives of Microbiology.

[24]  H. Wernérus,et al.  Directed immobilization of recombinant staphylococci on cotton fibers by functional display of a fungal cellulose-binding domain. , 2001, FEMS microbiology letters.

[25]  K. Devine,et al.  YkdA and YvtA, HtrA-Like Serine Proteases inBacillus subtilis, Engage in Negative Autoregulation and Reciprocal Cross-Regulation of ykdA and yvtAGene Expression , 2001, Journal of bacteriology.

[26]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[27]  S. Bron,et al.  Signal Peptide-Dependent Protein Transport inBacillus subtilis: a Genome-Based Survey of the Secretome , 2000, Microbiology and Molecular Biology Reviews.

[28]  M. Inouye,et al.  Folding Pathway Mediated by an Intramolecular Chaperone , 2000, The Journal of Biological Chemistry.

[29]  T. Nguyen,et al.  Partial protection to respiratory syncytial virus (RSV) elicited in mice by intranasal immunization using live staphylococci with surface-displayed RSV-peptides. , 2000, Vaccine.

[30]  M. Inouye,et al.  Intramolecular chaperones: polypeptide extensions that modulate protein folding. , 2000, Seminars in cell & developmental biology.

[31]  P. Samuelson,et al.  Engineering of a Staphylococcus carnosus surface display system by substitution or deletion of a Staphylococcus hyicus lipase propeptide. , 1999, FEMS microbiology letters.

[32]  S. Bron,et al.  Functional Analysis of Paralogous Thiol-disulfide Oxidoreductases in Bacillus subtilis * , 1999, The Journal of Biological Chemistry.

[33]  J. V. van Dijl,et al.  Improving protein secretion by engineering components of the bacterial translocation machinery. , 1999, Current opinion in biotechnology.

[34]  T. Nguyen,et al.  A surface-displayed cholera toxin B peptide improves antibody responses using food-grade staphylococci for mucosal subunit vaccine delivery. , 1999, FEMS immunology and medical microbiology.

[35]  S. Bron,et al.  Evaluation of Bottlenecks in the Late Stages of Protein Secretion in Bacillus subtilis , 1999, Applied and Environmental Microbiology.

[36]  M. Rose,et al.  ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis , 1999, Molecular microbiology.

[37]  A. Düsterhöft,et al.  Nucleotide sequence of the Bacillus subtilis temperate bacteriophage SPbetac2. , 1999, Microbiology.

[38]  M. Uhlén,et al.  Surface display of functional fibronectin‐binding domains on Staphylococcus carnosus , 1999, FEBS letters.

[39]  F. Götz,et al.  Staphylococcal lipases: molecular characterisation, secretion, and processing. , 1998, Chemistry and physics of lipids.

[40]  S. Engelmann,et al.  Thioredoxin Is an Essential Protein Induced by Multiple Stresses in Bacillus subtilis , 1998, Journal of bacteriology.

[41]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[42]  R. Freudl,et al.  Use of the pre-pro part of Staphylococcus hyicus lipase as a carrier for secretion of Escherichia coli outer membrane protein A (OmpA) prevents proteolytic degradation of OmpA by cell-associated protease(s) in two different gram-positive bacteria , 1997, Applied and environmental microbiology.

[43]  M. Hansson,et al.  Surface display of the cholera toxin B subunit on Staphylococcus xylosus and Staphylococcus carnosus , 1997, Applied and environmental microbiology.

[44]  M. Uhlén,et al.  Surface display on staphylococci: a comparative study , 1996, FEBS letters.

[45]  M. Uhlén,et al.  Surface display of a functional single-chain Fv antibody on staphylococci , 1996, Journal of bacteriology.

[46]  G. Rapoport,et al.  Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis , 1995, Journal of bacteriology.

[47]  M. Uhlén,et al.  Cell surface display of recombinant proteins on Staphylococcus carnosus , 1995, Journal of bacteriology.

[48]  F. Götz,et al.  Evidence for importance of the Staphylococcus hyicus lipase pro-peptide in lipase secretion, stability and activity. , 1994, FEMS microbiology letters.

[49]  R. Freudl,et al.  An outer membrane protein (OmpA) of Escherichia coli can be translocated across the cytoplasmic membrane of Bacillus subtllis , 1993 .

[50]  M. Sarvas,et al.  Secretion of the Escherichia coli outer membrane proteins OmpA and OmpF in Bacillus subtilis is blocked at an early intracellular step , 1992, Molecular microbiology.

[51]  P. D. de Jong,et al.  Ligation-independent cloning of PCR products (LIC-PCR). , 1990, Nucleic acids research.

[52]  G. Vonheijne The signal peptide. , 1990 .

[53]  D. McConnell,et al.  Characterization of PBSX, a defective prophage of Bacillus subtilis , 1990, Journal of bacteriology.

[54]  Emanuel Goldman,et al.  Practical Handbook of Microbiology , 1989 .

[55]  C. Saunders,et al.  Secretion of human serum albumin from Bacillus subtilis , 1987, Journal of bacteriology.

[56]  I. Palva Molecular cloning of alpha-amylase gene from Bacillus amyloliquefaciens and its expression in B. subtilis. , 1982, Gene.

[57]  R. Rosenthal,et al.  Bacillus subtilis bacteriophage SPbeta: localization of the prophage attachment site, and specialized transduction , 1977, Journal of bacteriology.

[58]  W. Haynes,et al.  The genus Bacillus , 1973 .

[59]  S. Bron,et al.  Ultraviolet inactivation and excision-repair in Bacillus subtilis. I. Construction and characterization of a transformable eightfold auxotrophic strain and two ultraviolet-sensitive derivatives. , 1972, Mutation research.

[60]  K. Okamoto,et al.  Conversion of Bacillus subtilis DNA to phage DNA following mitomycin C induction. , 1968, Journal of molecular biology.

[61]  J. Helmann,et al.  Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis sigma(W) and sigma(M) regulons. , 2002, Molecular microbiology.

[62]  Anne de Jong,et al.  Protein transport pathways in Bacillus subtilis: a genome-based road map , 2001 .

[63]  R. Losick,et al.  Bacillus Subtilis and Its Closest Relatives: From Genes to Cells , 2001 .

[64]  S. Bron,et al.  Signal peptide-dependent protein transport in Bacillus subtilis , 2000 .

[65]  R. Freudl,et al.  An outer membrane protein (OmpA) of Escherichia coli can be translocated across the cytoplasmic membrane of Bacillus subtilis. , 1993, Molecular microbiology.

[66]  C. Harwood,et al.  Molecular biological methods for Bacillus , 1990 .

[67]  G. von Heijne Protein targeting signals. , 1990, Current opinion in cell biology.

[68]  G. von Heijne The signal peptide. , 1990, The Journal of membrane biology.

[69]  C. Yanisch-Perron,et al.  Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. , 1985, Gene.