Advancing measurements of tropospheric NO2 from space: New algorithm and first global results from OMPS

We present a new algorithm based on the iterative spectral fitting technique for direct retrieval of nitrogen dioxide (NO2) vertical columns from hyperspectral satellite measurements, and a new spatial technique for separating the stratospheric and tropospheric contributions to the total NO2 vertical columns. This direct vertical column fitting (DVCF) algorithm allows more complete treatment of underlying algorithm physics compared to the differential optical absorption spectroscopy technique and enables more accurate accounting for the effects of spectral and altitude variations in NO 2 measurement sensitivities. This DVCF algorithm and the stratosphere-troposphere separation scheme are applied to ultraviolet measurements from the Nadir Mapper of the Ozone Mapping and Profiler Suite (OMPS) on the Suomi National Polar-orbiting Partnership spacecraft. The first results demonstrate the potential of OMPS for sensitive global monitoring of tropospheric NO 2 . Comparisons show good agreement with Aura Ozone Monitoring Instrument (OMI) tropospheric NO 2 data and that OMPS data have sufficient quality to continue and extend OMI NO2 data records.

[1]  P. Crutzen,et al.  NO x -catalyzed ozone destruction and NO x activation at midlatitudes to high latitudes as the main cause of the spring to fall ozone decline in the northern hemisphere , 2000 .

[2]  Michael Buchwitz,et al.  Total ozone retrieval from GOME UV spectral data using the weighting function DOAS approach , 2004 .

[3]  D. Jacob,et al.  Global modeling of tropospheric chemistry with assimilated meteorology : Model description and evaluation , 2001 .

[4]  Ulrich Platt,et al.  Differential optical absorption spectroscopy , 2008 .

[5]  Bernd Jähne,et al.  Quantitative analysis of NO x emissions from Global Ozone Monitoring Experiment satellite image sequences , 2001 .

[6]  R. Martin,et al.  Improved Satellite Retrievals of NO2 and SO2 over the Canadian Oil Sands and Comparisons with Surface Measurements , 2013 .

[7]  Michael Buchwitz,et al.  The Global Ozone Monitoring Experiment (Gome) : Mission, instrument concept, and first scientific results , 1997 .

[8]  J. Burrows,et al.  A MULTI WAVELENGTH APPROACH TO THE RETRIEVAL OF TROPOSPHERIC NO2 FROM GOME MEASUREMENTS , 2000 .

[9]  James F. Gleason,et al.  Algorithm for NO/sub 2/ vertical column retrieval from the ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Arlin J. Krueger,et al.  Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: Comparison and limitations , 2007 .

[11]  Michael Eisinger,et al.  GOME-2 on MetOp , 2006 .

[12]  James F. Gleason,et al.  An improved retrieval of tropospheric nitrogen dioxide from GOME , 2002 .

[13]  Michael Buchwitz,et al.  A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4 , 2000 .

[14]  Xiong Liu,et al.  Direct retrieval of sulfur dioxide amount and altitude from spaceborne hyperspectral UV measurements: Theory and application , 2010 .

[15]  Arlin J. Krueger,et al.  Improving retrieval of volcanic sulfur dioxide from backscattered UV satellite observations , 2009 .

[16]  H. Dorn,et al.  Differential Optical Absorption Spectroscopy (DOAS) - The Juelich OH-DOAS instrument , 2005 .

[17]  Xiong Liu,et al.  Estimating the altitude of volcanic sulfur dioxide plumes from space borne hyper‐spectral UV measurements , 2009 .

[18]  N. Krotkov,et al.  First estimates of global free-tropospheric NO 2 abundances derived using a cloud-slicing technique applied to satellite observations from the Aura Ozone Monitoring Instrument (OMI) , 2014 .

[19]  Andreas Hilboll,et al.  Long-term changes of tropospheric NO 2 over megacities derived from multiple satellite instruments , 2012 .

[20]  Kelly Chance,et al.  Spectroscopic Measurements of Tropospheric Composition from Satellite Measurements in the Ultraviolet and Visible: Steps Toward Continuous Pollution Monitoring from Space , 2006 .

[21]  Ann Carine Vandaele,et al.  Measurements of the NO2 absorption cross-section from 42 000 cm−1 to 10 000 cm−1 (238–1000 nm) at 220 K and 294 K , 1998 .

[22]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[23]  J. Dave Multiple Scattering in a Non-Homogeneous, Rayliegh Atmosphere , 1965 .

[24]  D. Brunner,et al.  Accounting for surface reflectance anisotropy in satellite retrievals of tropospheric NO 2 , 2010 .

[25]  Kelly Chance,et al.  Undersampling correction for array detector-based satellite spectrometers. , 2005, Applied optics.

[26]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[27]  Johannes Orphal,et al.  Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region , 2003 .

[28]  R. Martin,et al.  Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide , 2013 .

[29]  Alan Fried,et al.  Evaluation of GOME satellite measurements of tropospheric NO2 and HCHO using regional data from aircraft campaigns in the southeastern United States , 2004 .

[30]  K. F. Boersma,et al.  Near-real time retrieval of tropospheric NO 2 from OMI , 2006 .

[31]  Eric Bucsela,et al.  A high spatial resolution retrieval of NO 2 column densities from OMI: method and evaluation , 2011 .

[32]  Steffen Beirle,et al.  Weekly cycle of NO 2 by GOME measurements: a signature of anthropogenic sources , 2003 .

[33]  Robert J. D. Spurr,et al.  Air-mass factor formulation for spectroscopic measurements from satellites: application to formaldeh , 2001 .

[34]  James F. Gleason,et al.  A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments : applications to OMI , 2013 .

[35]  Andreas Hilboll,et al.  An improved NO 2 retrieval for the GOME-2 satellite instrument , 2011 .

[36]  J. Burrows,et al.  ATMOSPHERIC REMOTE-SENSING REFERENCE DATA FROM GOME — 2 . TEMPERATURE-DEPENDENT ABSORPTION CROSS SECTIONS OF O 3 IN THE 231 — 794 NM RANGE , 1998 .

[37]  Heikki Saari,et al.  The ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Discrete-ordinate radiative transfer in a stratified medium with first-order rotational Raman scattering , 2008 .

[39]  Kai Yang,et al.  First observations of SO2 from the satellite Suomi NPP OMPS: Widespread air pollution events over China , 2013 .

[40]  J. Burrows,et al.  Increase in tropospheric nitrogen dioxide over China observed from space , 2005, Nature.

[41]  Chao Luo,et al.  Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: Insight into the seasonal variation of nitrogen oxides at northern midlatitudes , 2010 .

[42]  Robert F. Cahalan,et al.  Independent Pixel and Monte Carlo Estimates of Stratocumulus Albedo , 1994 .

[43]  Klaus Pfeilsticker,et al.  Global tropospheric NO2 column distributions' Comparing three-dimensional model calculations with GOME , 2001 .

[44]  Michael Haken,et al.  Postlaunch performance of the Suomi National Polar‐orbiting Partnership Ozone Mapping and Profiler Suite (OMPS) nadir sensors , 2014 .

[45]  A. Hahne,et al.  GOME-2 – Metop ’ s Second-Generation Sensor for Operational Ozone Monitoring , 2000 .

[46]  John P. Burrows,et al.  TROPOSPHERIC NO2 FROM GOME MEASUREMENTS , 2002 .

[47]  Kelly Chance,et al.  An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared , 2010 .

[48]  John P. Burrows,et al.  SO 2 Retrieval from SCIAMACHY using the Weighting Function DOAS (WFDOAS) technique: comparison with Standard DOAS retrieval , 2008 .