Time-Hierarchical Clustering and Visualization of Weather Forecast Ensembles

We propose a new approach for analyzing the temporal growth of the uncertainty in ensembles of weather forecasts which are started from perturbed but similar initial conditions. As an alternative to traditional approaches in meteorology, which use juxtaposition and animation of spaghetti plots of iso-contours, we make use of contour clustering and provide means to encode forecast dynamics and spread in one single visualization. Based on a given ensemble clustering in a specified time window, we merge clusters in time-reversed order to indicate when and where forecast trajectories start to diverge. We present and compare different visualizations of the resulting time-hierarchical grouping, including space-time surfaces built by connecting cluster representatives over time, and stacked contour variability plots. We demonstrate the effectiveness of our visual encodings with forecast examples of the European Centre for Medium-Range Weather Forecasts, which convey the evolution of specific features in the data as well as the temporally increasing spatial variability.

[1]  Rüdiger Westermann,et al.  Three-dimensional visualization of ensemble weather forecasts – Part 1: The visualization tool Met.3D (version 1.0) , 2015 .

[2]  Per Ola Kristensson,et al.  An Evaluation of Space Time Cube Representation of Spatiotemporal Patterns , 2009, IEEE Transactions on Visualization and Computer Graphics.

[3]  Daniel Weiskopf,et al.  Flow Radar Glyphs—Static Visualization of Unsteady Flow with Uncertainty , 2011, IEEE Transactions on Visualization and Computer Graphics.

[4]  Torsten Hägerstraand WHAT ABOUT PEOPLE IN REGIONAL SCIENCE , 1970 .

[5]  Stefan Bruckner,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 Isosurface Similarity Maps , 2022 .

[6]  Anne M. Denton,et al.  Clustering of Time Series Data , 2009, Encyclopedia of Data Warehousing and Mining.

[7]  David L. Kao,et al.  Visualizing spatial multivalue data , 2005, IEEE Computer Graphics and Applications.

[8]  Alex T. Pang,et al.  Glyphs for Visualizing Uncertainty in Vector Fields , 1996, IEEE Trans. Vis. Comput. Graph..

[9]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[10]  Lars Linsen,et al.  Visual Analysis of Multi-Run Spatio-Temporal Simulations Using Isocontour Similarity for Projected Views , 2016, IEEE Transactions on Visualization and Computer Graphics.

[11]  Hans-Christian Hege,et al.  Uncertain 2D Vector Field Topology , 2010, Comput. Graph. Forum.

[12]  Philip Chan,et al.  Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[13]  L. K. Hansen,et al.  On Clustering fMRI Time Series , 1999, NeuroImage.

[14]  Laura Maruster,et al.  Encyclopedia of data warehousing and mining , 2008 .

[15]  Kenneth I. Joy,et al.  Comparative Visual Analysis of Lagrangian Transport in CFD Ensembles , 2013, IEEE Transactions on Visualization and Computer Graphics.

[16]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[17]  Tim N. Palmer,et al.  Ensemble forecasting , 2008, J. Comput. Phys..

[18]  Florian Pappenberger,et al.  The TIGGE Project and Its Achievements , 2016 .

[19]  Andrew Mercer,et al.  Noodles: A Tool for Visualization of Numerical Weather Model Ensemble Uncertainty , 2010, IEEE Transactions on Visualization and Computer Graphics.

[20]  Rüdiger Westermann,et al.  3-D visualization of ensemble weather forecasts – Part 1: The visualization tool Met.3D (version 1.0) , 2015 .

[21]  Manuel Menezes de Oliveira Neto,et al.  Overview and State-of-the-Art of Uncertainty Visualization , 2014, Scientific Visualization.

[22]  Menno-Jan Kraak,et al.  The space - time cube revisited from a geovisualization perspective , 2003 .

[23]  Jian Huang,et al.  Geometric Quantification of Features in Large Flow Fields , 2012, IEEE Computer Graphics and Applications.

[24]  Allen Tannenbaum,et al.  Statistical shape analysis using kernel PCA , 2006, Electronic Imaging.

[25]  Hans-Jörg Schulz,et al.  The Great Wall of Space-Time , 2012, VMV.

[26]  Hamish A. Carr,et al.  On Histograms and Isosurface Statistics , 2006, IEEE Transactions on Visualization and Computer Graphics.

[27]  Tieniu Tan,et al.  Comparison of Similarity Measures for Trajectory Clustering in Outdoor Surveillance Scenes , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[28]  Rüdiger Westermann,et al.  Visual Analysis of Spatial Variability and Global Correlations in Ensembles of Iso‐Contours , 2016, Comput. Graph. Forum.

[29]  M. Sheelagh T. Carpendale,et al.  A Review of Temporal Data Visualizations Based on Space-Time Cube Operations , 2014, EuroVis.

[30]  Daniel Weiskopf,et al.  State of the Art of Parallel Coordinates , 2013, Eurographics.

[31]  Peter Bauer,et al.  The quiet revolution of numerical weather prediction , 2015, Nature.

[32]  Schloss Birlinghoven VISUAL DATA EXPLORATION USING SPACE-TIME CUBE , 2003 .

[33]  Rüdiger Westermann,et al.  Streamline Variability Plots for Characterizing the Uncertainty in Vector Field Ensembles , 2016, IEEE Transactions on Visualization and Computer Graphics.

[34]  J. V. van Wijk,et al.  Cluster and calendar based visualization of time series data , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[35]  Jonathan C. Roberts,et al.  Visual comparison for information visualization , 2011, Inf. Vis..

[36]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[37]  Ross T. Whitaker,et al.  Contour Boxplots: A Method for Characterizing Uncertainty in Feature Sets from Simulation Ensembles , 2013, IEEE Transactions on Visualization and Computer Graphics.

[38]  ILO NA G LATT,et al.  Utility of Hovmöller diagrams to diagnose Rossby wave trains , 2011 .

[39]  Helwig Hauser,et al.  Visualization and Visual Analysis of Multifaceted Scientific Data: A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[40]  Harald Sodemann,et al.  Planning aircraft measurements within a warm conveyor belt , 2014 .

[41]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[42]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[43]  Paul Rosen,et al.  From Quantification to Visualization: A Taxonomy of Uncertainty Visualization Approaches , 2011, WoCoUQ.

[44]  Amir B. Geva,et al.  Nonstationary time series analysis by temporal clustering , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[45]  Vijay Natarajan,et al.  Multiscale Symmetry Detection in Scalar Fields by Clustering Contours , 2014, IEEE Transactions on Visualization and Computer Graphics.

[46]  Rüdiger Westermann,et al.  Visualizing Contour Distributions in 2D Ensemble Data , 2013, EuroVis.

[47]  Wolfgang Berger,et al.  Comparative Visual Analysis of 2D Function Ensembles , 2012, Comput. Graph. Forum.

[48]  Bernhard Preim,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Blood Flow Clustering and Applications in Virtual Stenting of Intracranial Aneurysms , 2022 .

[49]  Miriah D. Meyer,et al.  Visually Comparing Weather Features in Forecasts , 2016, IEEE Transactions on Visualization and Computer Graphics.

[50]  Joe Michael Kniss,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 Visualizing Summary Statistics and Uncertainty , 2022 .

[51]  Thomas Nocke,et al.  Visual exploration and evaluation of climate-related simulation data , 2007, 2007 Winter Simulation Conference.