Three dimensional microstructuring of biopolymers by femtosecond laser irradiation

A sequence of single femtosecond pulses is used to create a pattern of laser affected spots at increasing depths below the surface of transparent biopolymer samples. Materials with different water contents and mechanical strengths, gelatine, chitosan, synthetic polyvinyl pyrrolidone, and biopolymer-polymer blends, are irradiated near the edge of the sample with an amplified Titanium:Sapphire laser (800 nm) delivering 30 fs pulses through a 0.45 numerical aperture objective with energies of 100–3000 nJ. The micrometric modified region is observed by optical microscopy perpendicularly to irradiation. Self-focusing and optical aberration are major factors controlling morphology and size of the created spots.

[1]  Rui L. Reis,et al.  Properties of melt processed chitosan and aliphatic polyester blends , 2005 .

[2]  Jonathan B. Ashcom,et al.  Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica , 2006 .

[3]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[4]  A. Vogel,et al.  Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery. , 2008, Physical review letters.

[5]  Shan Sun,et al.  3D femtosecond laser patterning of collagen for directed cell attachment. , 2005, Biomaterials.

[6]  Eric Mazur,et al.  Morphology of femtosecond laser-induced structural changes in bulk transparent materials , 2004 .

[7]  M. Castillejo,et al.  Femtosecond laser processing of biopolymers at high repetition rate. , 2008, Physical chemistry chemical physics : PCCP.

[8]  A. Bigi,et al.  Relationship between triple-helix content and mechanical properties of gelatin films. , 2004, Biomaterials.

[9]  K. Sakurai,et al.  Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends , 2000 .

[10]  Josep Samitier,et al.  Complex microstructured 3D surfaces using chitosan biopolymer. , 2009, Small.

[11]  Saulius Juodkazis,et al.  3D laser microfabrication: principles and applications , 2006 .

[12]  E. Mazur,et al.  Ultrafast-laser driven micro-explosions in transparent materials , 1997 .

[13]  A. Vogel,et al.  Mechanisms of femtosecond laser nanosurgery of cells and tissues , 2005 .

[14]  Wei Zhou,et al.  Studies of KrF laser-induced long periodic structures on polyimide , 2009 .

[15]  Saulius Juodkazis,et al.  Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation , 2006 .

[16]  Mattheus F. A. Goosen,et al.  Applications of Chitin and Chitosan , 1997 .

[17]  S. Juodkazis,et al.  3D Laser Microfabrication , 2008 .

[18]  T. Corrales,et al.  Chemiluminescence study of commercial type-B gelatines , 2004 .

[19]  Robert K. Bregg Current topics in polymer research , 2005 .

[20]  Bernard Prade,et al.  Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation , 1995 .

[21]  Shaochen Chen,et al.  Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers. , 2005, Biomaterials.

[22]  Stephen Y. Chou,et al.  Imprint of sub-25 nm vias and trenches in polymers , 1995 .

[23]  A. Sionkowska,et al.  Collagen fibrils in UV irradiated poly(vinyl pyrrolidone) films , 2008 .

[24]  M. Oujja,et al.  Laser induced foaming and chemical modifications of gelatine films , 2008 .

[25]  M. Cecchini,et al.  PC12 differentiation on biopolymer nanostructures , 2007 .

[26]  Mathis O. Riehle,et al.  The use of materials patterned on a nano- and micro-metric scale in cellular engineering , 2002 .

[27]  B. Chichkov,et al.  Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine , 2007 .

[28]  Eugenia Kumacheva,et al.  Nanostructured polymers for photonics , 2008 .

[29]  Holger Lubatschowski,et al.  Femtosecond Technology for Technical and Medical Applications , 2010 .