GeSi photonics for telecommunication applications

We experimentally and theoretically investigate GeSi-based photonics for future on-chip optical interconnect on bulk Silicon substrates with dense wavelength division multiplexing (WDM) system. We experimentally show that Ge-rich Si1-xGex can be used as both a passive low loss waveguide and a substrate to facilitate low-temperature epitaxial growth of Ge-based active devices working at low optical loss wavelength of Ge-rich Si1-xGex waveguides. We also theoretically discussed the possibilities to realize a compact passive component based on Ge-rich Si1-xGex material system on bulk Si wafer. From simulation the system based on Ge-rich Si1-xGex waveguide and the Si1-yGey (y < x) lower cladding layer is good enough to ensure compactness of important on-chip photonic components including passive waveguide and GeSi-based array waveguide grating (AWG). The small refractive index contrast between Ge-rich Si1-xGex waveguide and the Si1-yGey lower cladding layer potentially avoid the polarization dependent loss and detrimental fabrication tolerance of WDM system. Our studies show that GeSi-based photonics could uniquely provide both passive and active functionalities for dense WDM system.

[1]  Xavier Le Roux,et al.  Polarization dependence of quantum-confined Stark effect in Ge/SiGe quantum well planar waveguides. , 2011, Optics letters.

[2]  Ying Zhang,et al.  CMOS-integrated high-speed MSM germanium waveguide photodetector. , 2010, Optics express.

[3]  D. Miller,et al.  Surface-Normal Ge/SiGe Asymmetric Fabry–Perot Optical Modulators Fabricated on Silicon Substrates , 2013, Journal of Lightwave Technology.

[4]  Delphine Marris-Morini,et al.  Recent progress in GeSi electro-absorption modulators , 2013, Science and technology of advanced materials.

[5]  Paul Crozat,et al.  Integrated germanium optical interconnects on silicon substrates , 2014, Nature Photonics.

[6]  Meint Meint Smit,et al.  Ultrasmall waveguide bends: the corner mirrors of the future? , 1995 .

[7]  J. Cunningham,et al.  High-speed GeSi EA modulator at 1550 nm , 2012, The 9th International Conference on Group IV Photonics (GFP).

[8]  M Myronov,et al.  Ge/SiGe quantum confined Stark effect electro-absorption modulation with low voltage swing at λ = 1550 nm. , 2014, Optics express.

[9]  L. Vivien,et al.  Handbook of Silicon Photonics , 2013 .

[10]  Xavier Le Roux,et al.  Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures. , 2010, Optics letters.

[11]  Xavier Le Roux,et al.  23 GHz Ge/SiGe multiple quantum well electro-absorption modulator. , 2012, Optics express.

[12]  Delphine Marris-Morini,et al.  Electro-refractive effect in Ge/SiGe multiple quantum wells , 2013 .

[13]  Jie Sun,et al.  Nanophotonic integration in state-of-the-art CMOS foundries. , 2011, Optics express.

[14]  L. Vivien,et al.  Ge quantum well optoelectronic devices for light modulation, detection, and emission , 2013 .

[15]  Jifeng Liu Monolithically Integrated Ge-on-Si Active Photonics , 2014 .

[16]  Koji Yamada,et al.  Monolithic integration and synchronous operation of germanium photodetectors and silicon variable optical attenuators. , 2010, Optics express.

[17]  D. Kwong,et al.  Scaling computation with silicon photonics , 2014 .

[18]  Samerkhae Jongthammanurak Germanium-rich silicon-germanium materials for field-effect modular application , 2008 .

[19]  M. Watts,et al.  Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. , 2011, Optics express.

[20]  Guo-Qiang Lo,et al.  Novel evanescent-coupled germanium electro-absorption modulator featuring monolithic integration with germanium p-i-n photodetector. , 2011, Optics express.

[21]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[22]  M.K. Smit,et al.  Extremely small AWG demultiplexer fabricated on InP by using a double-etch Process , 2004, IEEE Photonics Technology Letters.

[23]  Giovanni Isella,et al.  Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices , 2004 .

[24]  M. Berroth,et al.  Ge-on-Si p-i-n Photodiodes With a 3-dB Bandwidth of 49 GHz , 2009, IEEE Photonics Technology Letters.

[25]  Shen Ren,et al.  Ge/SiGe Quantum Well Waveguide Modulator Monolithically Integrated With SOI Waveguides , 2012, IEEE Photonics Technology Letters.

[26]  Hermann A. Haus,et al.  Air trench waveguide bend for high-density optical integration , 2004, SPIE OPTO.

[27]  Jurgen Michel,et al.  Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators , 2008 .

[28]  H. Zimmermann,et al.  Zero-bias 40Gbit/s germanium waveguide photodetector on silicon. , 2012, Optics express.

[29]  Kazumi Wada,et al.  ResearchArticle A New Approach of Electronics and Photonics Convergence on Si CMOS Platform: How to Reduce Device Diversity of Photonics for Integration , 2008 .

[30]  Randolph Kirchain,et al.  A roadmap for nanophotonics , 2007 .

[31]  D. Miller,et al.  Strong quantum-confined Stark effect in germanium quantum-well structures on silicon , 2005, Nature.

[32]  A. R. Moore,et al.  Intrinsic Optical Absorption in Germanium-Silicon Alloys , 1958 .

[33]  Delphine Marris-Morini,et al.  Strong quantum-confined Stark effect from light hole related direct-gap transitions in Ge quantum wells , 2013 .