Development of software for reliability based design of steel framed structures in fire

.............................................................................................. ii Lay Summary.........................................................................................iv Acknowledgements ............................................................... .............. vi Publications .........................................................................................vii Table of

[1]  Jose L. Torero,et al.  Structural response of tall buildings to multiple floor fires , 2007 .

[2]  Siu-Kui Au,et al.  Compartment fire risk analysis by advanced Monte Carlo simulation , 2007 .

[3]  Eric Mayer,et al.  Properties Of Concrete , 2016 .

[4]  Amin Heidarpour,et al.  Nonlinear Analysis of Composite Beams with Partial Interaction in Steel Frame Structures at Elevated Temperature , 2010 .

[5]  Ronald L. Alpert THE FIRE-INDUCED CEILING-JET REVISITED , 2011 .

[6]  Ann E. Jeffers,et al.  Stochastic Analysis of Structures in Fire by Monte Carlo Simulation , 2013 .

[7]  Darlene Rini,et al.  Performance Based Structural Fire Engineering for Modern Building Design , 2008 .

[8]  Panagiotis Kotsovinos,et al.  The World Trade Center 9/11 Disaster and Progressive Collapse of Tall Buildings , 2013 .

[9]  F. W. Diederich,et al.  Structural optimization and design based on a reliability design criterion , 1963 .

[10]  António M. Correia,et al.  Fire resistance of steel columns with restrained thermal elongation , 2012 .

[11]  R. Rackwitz,et al.  A benchmark study on importance sampling techniques in structural reliability , 1993 .

[12]  Martin Gillie,et al.  Analysis of heated structures: Nature and modelling benchmarks , 2009 .

[13]  Ulrich Schneider,et al.  Concrete at High Temperatures -- A General Review* , 1988 .

[14]  Andrew H. Buchanan,et al.  Fire engineering for a performance based code , 1994 .

[15]  A. Y. Elghazouli,et al.  Failure of Lightly Reinforced Concrete Members under Fire. I: Analytical Modeling , 2004 .

[16]  Jeremy Fraser-Mitchell,et al.  An Object-oriented Simulation (crisp 11) For Fire Risk Assessment , 1994 .

[17]  Giuliano Augusti,et al.  Performance-Based Design in risk assessment and reduction , 2008 .

[18]  Sven Erik Magnusson,et al.  Rational Design Methodology for Fire Exposed Load Bearing Structures , 1981 .

[19]  Asif Usmani,et al.  Behaviour of a small composite steel frame structure in a “long-cool” and a “short-hot” fire , 2004 .

[20]  Jean-Marc Franssen,et al.  Failure temperature of a system comprising a restrained column submitted to fire , 2000 .

[21]  M. Law A RELATIONSHIP BETWEEN FIRE GRADING AND BUILDING DESIGN AND CONTENTS , 1971 .

[22]  Yong Wang,et al.  An experimental study of non-sway loaded and rotationally restrained steel column assemblies under fire conditions: analysis of test results and design calculations , 2003 .

[23]  Wilson H. Tang,et al.  Probability Concepts in Engineering Planning and Design : Emphasis on Application to Civil and Environmental Engineering , 2007 .

[24]  Colin Bailey,et al.  Membrane action of unrestrained lightly reinforced concrete slabs at large displacements , 2001 .

[25]  Yngve Anderberg,et al.  Modelling Steel Behaviour , 1988 .

[26]  C. G. Bailey,et al.  The structural behaviour of steel frames with composite floorslabs subject to fire: Part 1: Theory , 2000 .

[27]  Jean-Marc Franssen,et al.  STABILITY OF STEEL COLUMNS IN CASE OF FIRE: EXPERIMENTAL EVALUATION , 1998 .

[28]  D. Drysdale An Introduction to Fire Dynamics , 2011 .

[29]  J. Baker,et al.  An Introduction to Probabilistic Seismic Hazard Analysis (PSHA) , 2008 .

[30]  Asif Usmani,et al.  Tall building collapse mechanisms initiated by fire: Mechanisms and design methodology , 2012 .

[31]  David A. Nethercot,et al.  Material and geometric properties of structural steel for use in design , 1997 .

[32]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[33]  J. Hammersley SIMULATION AND THE MONTE CARLO METHOD , 1982 .

[34]  Ian Burgess,et al.  Experimental behaviour of concrete floor slabs at large displacements , 2004 .

[35]  Siu-Kui Au,et al.  Application of subset simulation methods to reliability benchmark problems , 2007 .

[36]  Andrea Prota,et al.  Probabilistic approach for failure assessment of steel structures in fire by means of plastic limit analysis , 2014 .

[37]  Keith Porter,et al.  An Overview of PEER's Performance-Based Earthquake Engineering Methodology , 2003 .

[38]  C. R Barnett Erratum to “BFD curve: a new empirical model for compartment fire temperatures” , 2002 .

[39]  Bassam A. Izzuddin,et al.  Experimental evaluation of the mechanical properties of steel reinforcement at elevated temperature , 2009 .

[40]  F. R. Farmer,et al.  SITING CRITERIA: A NEW APPROACH. , 1967 .

[41]  John B. Mander,et al.  Financial risk assessment methodology for natural hazards , 2006 .

[42]  J. Beck,et al.  Important sampling in high dimensions , 2003 .

[43]  L. Twilt Strength and deformation properties of steel at elevated temperatures: Some practical implications , 1988 .

[44]  Terje Haukaas,et al.  Seismic risk analysis with reliability methods, part II: Analysis , 2013 .

[45]  Carlos Marcelo Ramirez Building-specific loss estimation methods & tools for simplified performance-based earthquake engineering , 2009 .

[46]  Asif Usmani,et al.  A New Design Method to Dertermine the Membrane Capacity of Laterally Restrained Composite Floor Slabs in Fire, Part 2: Validation , 2005 .

[47]  P. H. Thomas Design guide: Structure fire safety CIB W14 Workshop report , 1986 .

[48]  Giuliano Augusti,et al.  Performance-Based Wind Engineering: Towards a general procedure , 2011 .

[49]  A. Y. Elghazouli,et al.  Failure of unrestrained lightly reinforced concrete slabs under fire, Part I: Analytical models , 2010 .

[50]  G. I. Schuëller,et al.  Benchmark Study on Reliability Estimation in Higher Dimensions of Structural Systems – An Overview , 2007 .

[51]  Susan Lamont The Behaviour of Multi-storey Composite Steel Framed Structures in Response to Compartment Fires , 2005 .

[52]  Jack P. Moehle,et al.  An application of peer performance-based earthquake engineering methodology , 2006 .

[53]  M. F. Versteeg External safety policy in the netherlands: An approach to risk management , 1988 .

[54]  Gordon Henry Clannachan Modelling and simulation aspects of performance-based wind engineering of tall buildings , 2012 .

[55]  Farzad Naeim,et al.  Performance Based Seismic Design of Tall Buildings , 2010 .

[56]  Ian A Fletcher,et al.  Performance of concrete in fire: a review of the state of the art, with a case study of the windsor tower fire , 2006 .

[57]  Gregory L. Fenves,et al.  Object-oriented finite element programming: frameworks for analysis, algorithms and parallel computing , 1997 .

[58]  Neil Cameron The behaviour and design of composite floor systems in fire , 2003 .

[59]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[60]  Guillermo Rein,et al.  MULTI-STOREY FIRE ANALYSIS FOR HIGH-RISE BUILDINGS , 2007 .

[61]  Asif Usmani Understanding the Response of Composite Structures to Fire , 2005 .

[62]  R. L. Alpert Calculation of response time of ceiling-mounted fire detectors , 1972 .

[63]  Florian M. Block,et al.  The Practical Application of Structural Fire Engineering on a Retail Development in the UK , 2010 .

[64]  R. Medina,et al.  Seismic Demands for Nondeteriorating Frame Structures and Their Dependence on Ground Motions , 2003 .

[65]  Brian J. Meacham,et al.  Performance-based building regulatory systems. Principles and experiences , 2010 .

[66]  Jonathan P. Stewart,et al.  Evaluation of the seismic performance of a code‐conforming reinforced‐concrete frame building—from seismic hazard to collapse safety and economic losses , 2007 .

[67]  Martin Gillie,et al.  Structural behaviour during a vertically travelling fire , 2010 .

[68]  Asif Usmani,et al.  A very simple method for assessing tall building safety in major fires , 2009 .

[69]  Venkatesh Kodur,et al.  Properties of Concrete at Elevated Temperatures , 2014 .

[70]  František Wald,et al.  Performance-Based Fire Engineering of Structures , 2012 .

[71]  W CIB RATIONAL FIRE SAFETY ENGINEERING APPROACH TO FIRE RESISTANCE IN BUILDINGS , 2001 .

[72]  I. D. Bennetts,et al.  Fires In Enclosures With Single Ventilation Openings - Comparison Of Long And Wide Enclosures , 2000 .

[73]  Ove Pettersson,et al.  Structural fire behaviour - development trends , 1986 .

[74]  Brian J. Meacham,et al.  Performance-Based Structural Fire Safety , 2006 .

[75]  Robby Caspeele,et al.  Probabilistic analysis of concrete beams during fire , 2011 .

[76]  C. Cornell Engineering seismic risk analysis , 1968 .

[77]  Faris Ali,et al.  The effect of axial restraint on the fire resistance of steel columns , 1998 .

[78]  A. Touran,et al.  RANK CORRELATIONS IN SIMULATING CONSTRUCTION COSTS , 1997 .

[79]  Joel P. Conte,et al.  Performance Based Earthquake Engineering: Application to an Actual Bridge-Foundation-Ground System , 2007 .

[80]  Asif Usmani,et al.  A New Design Method to Determine the Membrane Capacity of Laterally Restrained Composite Floor slabs in Fire, Part 1: Theory and Method; Part 2: Validation , 2005 .

[81]  G. Schuëller,et al.  Chair of Engineering Mechanics Ifm-publication 2-374 a Critical Appraisal of Reliability Estimation Procedures for High Dimensions , 2022 .

[82]  Geoff Ballard,et al.  The tolerability of risk from nuclear power stations , 2006 .

[83]  D. B. Moore,et al.  The tensile membrane action of unrestrained composite slabs simulated under fire conditions , 2000 .

[84]  Asif Usmani,et al.  Limit capacity of laterally restrained reinforced concrete floor slabs in fire , 2004 .

[85]  George. V. Hadjisophocleous,et al.  Literature review of performance-based fire codes and design environment , 1998 .

[86]  Belfield and Everest Davis Spon's Architects' and Builders' Price Book , 1991 .

[87]  B. R. Kirby,et al.  High temperature properties of hot-rolled, structural steels for use in fire engineering design studies , 1988 .

[88]  L. Twilt,et al.  Valorisation project: Natural fire safety concept , 2002 .

[89]  David Nethercot,et al.  Safety variations in steel designed using Eurocode 3 , 2002 .

[90]  Venkatesh Kodur,et al.  High-Temperature Properties of Steel for Fire Resistance Modeling of Structures , 2010 .

[91]  Milan Holický,et al.  Verification of load factors for concrete components by reliability and optimization analysis: Background documents for implementing Eurocodes , 2000 .

[92]  V. Verderaime Illustrated structural application of universal first-order reliability method , 1994 .

[93]  Jean-Marc Franssen,et al.  A tool to design steel elements submitted to compartment fires—OZone V2. Part 1: pre- and post-flashover compartment fire model , 2003 .

[94]  Gordon Cooke,et al.  Future codes for fire safety design , 1994 .

[95]  Henrik O. Madsen,et al.  Structural Reliability Methods , 1996 .

[96]  C. R. Barnett Replacing international temperature–time curves with BFD curve , 2007 .

[97]  Jean-Claude Dotreppe,et al.  A tool to design steel elements submitted to compartment fires—OZone V2. Part 2: Methodology and application , 2003 .

[98]  K. W. Poh,et al.  Behavior of Steel Columns at Elevated Temperatures , 1995 .

[99]  Nicolas Luco,et al.  Structure-Specific Scalar Intensity Measures for Near-Source and Ordinary Earthquake Ground Motions , 2007 .

[100]  Vaughan Beck Fire research lecture 1993: performance based fire safety design ― recent developments in Australia , 1994 .

[101]  Asif Usmani,et al.  Determination of Fire Induced Collapse Mechanisms of Multi-Storey Steel Framed Structures , 2005 .

[102]  Kevin R. Mackie,et al.  A Framework for Performance-Based Earthquake Engineering of Bridge-Abutment Systems , 2012 .

[103]  Guillermo Rein,et al.  Travelling fires for structural design-Part II: Design methodology , 2012 .

[104]  Jian Jiang,et al.  Using OpenSees for structures in fire , 2012 .

[105]  Noureddine Bénichou,et al.  FiRECAM: An Equivalency and Performance-Compliance Tool for Cost-Effective Fire Safety Design , 2001 .

[106]  Collin Carbno,et al.  Uncertainty Analysis With High Dimensional Dependence Modelling , 2007, Technometrics.

[107]  C. R. Barnett,et al.  BFD curve: a new empirical model for fire compartment temperatures , 2002 .

[108]  David A. Nethercot,et al.  Progressive collapse of multi-storey buildings due to sudden column loss—Part II: Application , 2008 .

[109]  A. W. Beeby,et al.  Designers Guide to EN 1992-1-1 and EN 1992-1-2 Eurocode 2: Design of Concrete Structures. General rules and rules for buildings and structural fire design , 2005 .

[110]  Takao Wakamatsu Devepolment Of Design System For Building Fire Safety , 1989 .

[111]  Andrew H. Buchanan,et al.  Structural Design for Fire Safety , 2001 .

[112]  S. Lamont,et al.  Fundamental principles of structural behaviour under thermal effects , 2001 .

[113]  J. Beck,et al.  Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation , 2001 .

[114]  David Lange,et al.  Risk and Performance Based Fire Safety Design of Steel and Composite Structures , 2009 .