Discovering non-terminating inputs for multi-path polynomial programs
暂无分享,去创建一个
[1] Andreas Podelski,et al. Proving program termination , 2011, Commun. ACM.
[2] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[3] Ernst W. Mayr,et al. Membership in Plynomial Ideals over Q Is Exponential Space Complete , 1989, STACS.
[4] Mark Braverman,et al. Termination of Integer Linear Programs , 2006, CAV.
[5] Rossella Lupacchini. Turing (1936), On Computable Numbers, with an Application to the Entscheidungsproblem , 2016 .
[6] Chaochen Zhou,et al. Recent advances in program verification through computer algebra , 2009, Frontiers of Computer Science in China.
[7] Andreas Podelski,et al. A Complete Method for the Synthesis of Linear Ranking Functions , 2004, VMCAI.
[8] Markus Müller-Olm,et al. Computing polynomial program invariants , 2004, Inf. Process. Lett..
[9] Jürgen Giesl,et al. Automated Detection of Non-termination and NullPointerExceptions for Java Bytecode , 2011, FoVeOOS.
[10] Ashish Tiwari,et al. Termination of Linear Programs , 2004, CAV.
[11] Zhenbing Zeng,et al. Termination Analysis of Linear Loops , 2010, Int. J. Found. Comput. Sci..
[12] Min Wu,et al. Finding positively invariant sets of a class of nonlinear loops via curve fitting , 2009, SNC '09.
[13] Deepak Kapur,et al. A Quantifier-Elimination Based Heuristic for Automatically Generating Inductive Assertions for Programs , 2006, J. Syst. Sci. Complex..
[14] Ming Xu,et al. Symbolic termination analysis of solvable loops , 2013, J. Symb. Comput..
[15] William R. Harris,et al. Alternation for Termination , 2010, SAS.
[16] Bican Xia,et al. An Algorithm for Isolating the Real Solutions of Semi-algebraic Systems , 2002, J. Symb. Comput..
[17] Patrick Cousot,et al. Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation and Semidefinite Programming , 2005, VMCAI.
[18] Donal O'Shea,et al. Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.
[19] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[20] Sumit Gulwani,et al. Proving Conditional Termination , 2008, CAV.
[21] Henny B. Sipma,et al. Synthesis of Linear Ranking Functions , 2001, TACAS.
[22] Thomas A. Henzinger,et al. Proving non-termination , 2008, POPL '08.
[23] Laura Kovács,et al. Reasoning Algebraically About P-Solvable Loops , 2008, TACAS.
[24] Andreas Podelski,et al. Termination proofs for systems code , 2006, PLDI '06.
[25] Bican Xia,et al. DISCOVERER: a tool for solving semi-algebraic systems , 2007, ACCA.
[26] Enric Rodríguez-Carbonell,et al. Generating all polynomial invariants in simple loops , 2007, J. Symb. Comput..
[27] Chaochen Zhou,et al. Discovering Non-linear Ranking Functions by Solving Semi-algebraic Systems , 2007, ICTAC.
[28] Henny B. Sipma,et al. Termination of Polynomial Programs , 2005, VMCAI.
[29] Bican Xia,et al. Termination of linear programs with nonlinear constraints , 2010, J. Symb. Comput..
[30] Henny B. Sipma,et al. Non-linear loop invariant generation using Gröbner bases , 2004, POPL.
[31] Bican Xia,et al. Symbolic decision procedure for termination of linear programs , 2009, Formal Aspects of Computing.
[32] Philipp Rümmer,et al. Non-termination Checking for Imperative Programs , 2008, TAP.