Raman spectroscopic determination of hole concentration in undoped GaAsBi

Raman spectra of undoped GaAs1−xBix (0 < x < 0.037) grown on GaAs by molecular beam epitaxy were investigated. With an increase of Bi component, we find that the longitudinal optical phonon-hole-plasmon-coupled (LOPC) mode first appears in the vicinity of the unscreened longitudinal optical (ULO) phonon frequency, and then shifts towards the transverse optical (TO) phonon frequency. A new vibrational mode (∼287 cm−1) between the TO and the ULO phonons was verified by use of low temperature polarized Raman measurement and the corresponding scattering intensities are found to be linearly proportional to the composition of Bi in GaAsBi. The hole concentrations determined by using the LOPC/ULO Raman intensities ratio increase from ∼6.5 × 1016 to ∼2.8 × 1017 cm−3 with increased Bi content and the measured results are in agreement with Hall measurements. Furthermore, the influence of excitation laser power on the estimation of the hole densities is discussed with the help of power dependent Raman spectroscopy.

[1]  Pingping Chen,et al.  Photoreflectance and photoreflectance excitation study of optical transitions in GaAsBi/GaAs heterostructure , 2018 .

[2]  A. Erol,et al.  Raman and AFM studies on nominally undoped, p- and n-type GaAsBi alloys , 2017 .

[3]  K. Forghani,et al.  GaAs1−yBiy Raman signatures: illuminating relationships between the electrical and optical properties of GaAs1−yBiy and Bi incorporation , 2015 .

[4]  I. Marko,et al.  Physical properties and optimization of GaBiAs/(Al)GaAs based near-infrared laser diodes grown by MOVPE with up to 4.4% Bi , 2014 .

[5]  T. Jones,et al.  Theoretical and experimental studies of electronic band structure for GaSb1−xBix in the dilute Bi regime , 2014 .

[6]  G. Salamo,et al.  Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration. , 2014, Optics express.

[7]  A. Erol,et al.  Bismuth-induced effects on optical, lattice vibrational, and structural properties of bulk GaAsBi alloys , 2014, Nanoscale Research Letters.

[8]  R. Lewis,et al.  Raman scattering studies of strain effects in (100) and (311)B GaAs1−xBix epitaxial layers , 2013 .

[9]  P. Mooney,et al.  Deep level defects in n-type GaAsBi and GaAs grown at low temperatures , 2013 .

[10]  S. Sweeney,et al.  Bismide-nitride alloys: Promising for efficient light emitting devices in the near- and mid-infrared , 2013 .

[11]  R. Goldman,et al.  Spin lifetime measurements in GaAsBi thin films , 2012, 1211.2711.

[12]  Stephen J. Sweeney,et al.  Band engineering in dilute nitride and bismide semiconductor lasers , 2012, 1208.6441.

[13]  M. Capizzi,et al.  Bi-induced p-type conductivity in nominally undoped Ga(AsBi) , 2012 .

[14]  E. O’Reilly,et al.  Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs , 2011, 1111.4394.

[15]  K. Jarašiūnas,et al.  Hole diffusivity in GaAsBi alloys measured by a picosecond transient grating technique , 2011 .

[16]  R. Reedy,et al.  Effect of Bi alloying on the hole transport in the dilute bismide alloy GaAs 1 − x Bi x , 2011 .

[17]  T. Tiedje,et al.  Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1−xBix , 2008 .

[18]  T. Tiedje,et al.  Bi isoelectronic impurities in GaAs , 2008 .

[19]  A. Krotkus,et al.  Valence band anticrossing in GaBixAs1−x , 2007 .

[20]  Wladek Walukiewicz,et al.  Valence-band anticrossing in mismatched III-V semiconductor alloys , 2007 .

[21]  T. Tiedje,et al.  Giant spin-orbit bowing in GaAs1-xBix. , 2006, Physical review letters.

[22]  A. Zaoui,et al.  Structural and electronic properties of III-V bismuth compounds , 2006 .

[23]  Angelo Mascarenhas,et al.  Band gap of GaAs1−xBix, 0 , 2003 .

[24]  M. Seong,et al.  Spectroscopic determination of hole density in the ferromagnetic semiconductor Ga 1-x Mn x As , 2002, cond-mat/0206028.

[25]  Dexiu Huang,et al.  Carrier effects on Raman spectra from ZnSe/GaAs heterostructures , 2002 .

[26]  K. Oe,et al.  Raman studies on GaAs1−xBix and InAs1−xBix , 2001 .

[27]  Gert Irmer,et al.  LIGHT SCATTERING BY A MULTICOMPONENT PLASMA COUPLED WITH LONGITUDINAL-OPTICAL PHONONS : RAMAN SPECTRA OF P-TYPE GAAS :ZN , 1997 .

[28]  Verma,et al.  Raman-scattering probe of anharmonic effects in GaAs. , 1995, Physical review. B, Condensed matter.

[29]  A. Mlayah,et al.  Raman study of longitudinal optical phonon‐plasmon coupling and disorder effects in heavily Be‐doped GaAs , 1991 .

[30]  Young,et al.  Interaction of longitudinal-optic phonons with free holes as evidenced in Raman spectra from Be-doped p-type GaAs. , 1990, Physical review. B, Condensed matter.

[31]  Persson,et al.  Electron-energy-loss study of the space-charge region at semiconductor surfaces. , 1987, Physical review. B, Condensed matter.

[32]  H. Shen,et al.  Raman scattering determination of free‐carrier concentration and surface space‐charge layer in 〈100〉 n‐GaAs , 1985 .

[33]  R. Beserman,et al.  Localized states in mixed Ga P z As 1 − z crystals , 1980 .

[34]  Charles Howard Henry,et al.  Mixing of Visible and Near-Resonance Infrared Light in GaP , 1966 .