Striped patterns for generalized antiferromagnetic functionals with power law kernels of exponent smaller than d+2

We consider a class of continuous generalized antiferromagnetic models previously studied in [23] and [10], and in the discrete in [19, 20, 21]. The functional consists of an anisotropic perimeter term and a repulsive nonlocal term with a power law kernel. In certain regimes the two terms enter in competition and symmetry breaking with formation of periodic striped patterns is expected to occur. In this paper we extend the results of [10] to power law kernels within a range of exponents smaller than d + 2, being d the dimension of the underlying space. In particular, we prove that in a suitable regime minimizers are periodic unions of stripes with a given optimal period. Notice that the exponent d + 1 corresponds to an anisotropic version of the model for pattern formation in thin magnetic films.

[1]  Robert V. Kohn,et al.  Domain Branching in Uniaxial Ferromagnets: A Scaling Law for the Minimum Energy , 1999 .

[2]  Eris Runa,et al.  Interpenetration of matter in plate theories obtained as Gamma-limits , 2013, 1310.2865.

[3]  C. Muratov,et al.  On an Isoperimetric Problem with a Competing Nonlocal Term II: The General Case , 2012, 1206.7078.

[4]  S. Serfaty,et al.  The Γ-Limit of the Two-Dimensional Ohta–Kawasaki Energy. I. Droplet Density , 2011, 1201.0222.

[5]  M. Novaga,et al.  Emergence of nontrivial minimizers for the three-dimensional Ohta–Kawasaki energy , 2018, Pure and Applied Analysis.

[6]  A. Bernoff,et al.  Energy-driven pattern formation in planar dipole-dipole systems in the presence of weak noise. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  E. Lieb,et al.  Periodic Minimizers in 1D Local Mean Field Theory , 2007, 0712.2330.

[8]  E. Lieb,et al.  Phase transitions and reflection positivity. II. Lattice systems with short-range and Coulomb interactions , 1980 .

[9]  Eris Runa,et al.  On the optimality of stripes in a variational model with non-local interactions , 2016, Calculus of Variations and Partial Differential Equations.

[10]  Toshiki Maruyama,et al.  Nuclear “pasta” structures in low-density nuclear matter and properties of the neutron-star crust , 2013, 1304.4318.

[11]  M. Seul,et al.  Domain Shapes and Patterns: The Phenomenology of Modulated Phases , 1995, Science.

[12]  M. Cicalese,et al.  Droplet Minimizers of an Isoperimetric Problem with Long‐Range Interactions , 2011, 1110.0031.

[13]  Pattern formation for a family of models with local/nonlocal interactions , 2018, PAMM.

[14]  M. Novaga,et al.  Low Density Phases in a Uniformly Charged Liquid , 2015, 1504.05600.

[15]  R. Schrader,et al.  Axioms for Euclidean Green's functions , 1973 .

[16]  K. Kawasaki,et al.  Equilibrium morphology of block copolymer melts , 1986 .

[17]  E. Lieb,et al.  Modulated phases of a one-dimensional sharp interface model in a magnetic field , 2009, 0905.3758.

[18]  Peter Sternberg,et al.  Cascade of Minimizers for a Nonlocal Isoperimetric Problem in Thin Domains , 2013, SIAM J. Math. Anal..

[19]  M. Peletier,et al.  STRIPE PATTERNS IN A MODEL FOR BLOCK COPOLYMERS , 2009, 0902.2611.

[20]  Mark A. Peletier,et al.  Small Volume Fraction Limit of the Diblock Copolymer Problem: I. Sharp-Interface Functional , 2009, SIAM J. Math. Anal..

[21]  J. A. Cape,et al.  Magnetic Domain Structures in Thin Uniaxial Plates with Perpendicular Easy Axis , 1971 .

[22]  B. Simon,et al.  Infrared bounds, phase transitions and continuous symmetry breaking , 1976 .

[23]  Xinfu Chen,et al.  Periodicity and Uniqueness of Global Minimizers of an Energy Functional Containing a Long-Range Interaction , 2005, SIAM J. Math. Anal..

[24]  Cyrill B. Muratov,et al.  Magnetic Domains in Thin Ferromagnetic Films with Strong Perpendicular Anisotropy , 2018, Archive for Rational Mechanics and Analysis.

[25]  R. Seiringer,et al.  Periodic Striped Ground States in Ising Models with Competing Interactions , 2015, 1509.00057.

[26]  Sam Palmer,et al.  Magnetic domains , 2012, Journal of High Energy Physics.

[27]  Sara Daneri,et al.  Pattern Formation for a Local/Nonlocal Interaction Functional Arising in Colloidal Systems , 2018, SIAM J. Math. Anal..

[28]  Sara Daneri,et al.  One-dimensionality of the minimizers in the large volume limit for a diffuse interface attractive/repulsive model in general dimension , 2021, Calculus of Variations and Partial Differential Equations.

[29]  Stefan Müller,et al.  Singular perturbations as a selection criterion for periodic minimizing sequences , 1993 .

[30]  Eris Runa,et al.  One-dimensionality of the minimizers for a diffuse interface generalized antiferromagnetic model in general dimension , 2019, Journal of Functional Analysis.

[31]  Thilo M. Simon,et al.  A Nonlocal Isoperimetric Problem with Dipolar Repulsion , 2018, Communications in Mathematical Physics.

[32]  E. Lieb,et al.  Formation of Stripes and Slabs Near the Ferromagnetic Transition , 2013, 1304.6344.

[33]  Giovanni Alberti,et al.  Uniform energy distribution for an isoperimetric problem with long-range interactions , 2008 .

[34]  Eris Runa,et al.  Exact Periodic Stripes for Minimizers of a Local/Nonlocal Interaction Functional in General Dimension , 2017, Archive for Rational Mechanics and Analysis.

[35]  Xinfu Chen,et al.  An Application of the Modular Function in Nonlocal Variational Problems , 2007 .

[36]  R. Huebener Magnetic Flux Structures in Superconductors , 2001 .

[37]  E. Lieb,et al.  Checkerboards, stripes, and corner energies in spin models with competing interactions , 2011, 1106.0922.

[38]  E. Lieb,et al.  Ising models with long-range antiferromagnetic and short-range ferromagnetic interactions , 2006, cond-mat/0604668.