Systemic bis-phosphinic acid derivative restores chloride transport in Cystic Fibrosis mice

[1]  J. Mornon,et al.  New insights into structure and function of bis-phosphinic acid derivatives and implications for CFTR modulation , 2021, Scientific Reports.

[2]  L. Ostrowski,et al.  Secretory Cells Dominate Airway CFTR Expression and Function in Human Airway Superficial Epithelia. , 2020, American journal of respiratory and critical care medicine.

[3]  L. Lands,et al.  Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. , 2019, The New England journal of medicine.

[4]  A. Orth,et al.  Structure-guided combination therapy to potently improve the function of mutant CFTRs , 2018, Nature Medicine.

[5]  Aviv Regev,et al.  A revised airway epithelial hierarchy includes CFTR-expressing ionocytes , 2018, Nature.

[6]  S. Rowe,et al.  The therapeutic potential of CFTR modulators for COPD and other airway diseases , 2017, Current opinion in pharmacology.

[7]  J. Jais,et al.  Analysis of nasal potential in murine cystic fibrosis models. , 2016, The international journal of biochemistry & cell biology.

[8]  K. Zatloukal,et al.  Genetic deletion of keratin 8 corrects the altered bone formation and osteopenia in a mouse model of cystic fibrosis. , 2016, Human molecular genetics.

[9]  V. Baekelandt,et al.  rAAV-CFTRΔR Rescues the Cystic Fibrosis Phenotype in Human Intestinal Organoids and Cystic Fibrosis Mice. , 2016, American journal of respiratory and critical care medicine.

[10]  I. Sermet-Gaudelus,et al.  Biosynthesis of cystic fibrosis transmembrane conductance regulator. , 2014, The international journal of biochemistry & cell biology.

[11]  Piotr Zielenkiewicz,et al.  Discovery of novel potent ΔF508-CFTR correctors that target the nucleotide binding domain , 2013, EMBO molecular medicine.

[12]  G. Lukács,et al.  Mechanism-based corrector combination restores ΔF508-CFTR folding and function , 2013, Nature Chemical Biology.

[13]  F. Ratjen,et al.  Early lung disease in cystic fibrosis. , 2013, The Lancet. Respiratory medicine.

[14]  I. Sermet-Gaudelus,et al.  Characterization of Nasal Potential Difference in cftr Knockout and F508del-CFTR Mice , 2013, PloS one.

[15]  G. Lukács,et al.  Disruption of cytokeratin-8 interaction with F508del-CFTR corrects its functional defect. , 2012, Human molecular genetics.

[16]  L. Touqui,et al.  Mouse models of cystic fibrosis: phenotypic analysis and research applications. , 2011, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[17]  P. Lebecque,et al.  Airway delivery of low-dose miglustat normalizes nasal potential difference in F508del cystic fibrosis mice. , 2009, American journal of respiratory and critical care medicine.

[18]  P. Lebecque,et al.  Preclinical evidence that sildenafil and vardenafil activate chloride transport in cystic fibrosis. , 2008, American journal of respiratory and critical care medicine.

[19]  M. Welsh,et al.  Processing and function of CFTR-ΔF508 are species-dependent , 2007, Proceedings of the National Academy of Sciences.

[20]  M. Welsh,et al.  Processing and function of CFTR-DeltaF508 are species-dependent. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[21]  A. Edelman,et al.  Rescue of ΔF508-CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) by Curcumin: Involvement of the Keratin 18 Network , 2006, Journal of Pharmacology and Experimental Therapeutics.

[22]  Paola Vergani,et al.  The ABC protein turned chloride channel whose failure causes cystic fibrosis , 2006, Nature.

[23]  A. Edelman,et al.  involvement of the keratin 18 network. , 2006 .

[24]  H. Ye,et al.  Distribution of ion transport mRNAs throughout murine nose and lung. , 2000, American journal of physiology. Lung cellular and molecular physiology.

[25]  H. Morreau,et al.  A mouse model for the cystic fibrosis delta F508 mutation. , 1995, The EMBO journal.

[26]  H. S. Kim,et al.  Toward an animal model of cystic fibrosis: targeted interruption of exon 10 of the cystic fibrosis transmembrane regulator gene in embryonic stem cells. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Gustafson,et al.  Cystic Fibrosis , 2009, Journal of the Iowa Medical Society.