AER EAR: A Matched Silicon Cochlea Pair With Address Event Representation Interface

In this paper, we present an analog integrated circuit containing a matched pair of silicon cochleae and an address event interface. Each section of the cochlea, modeled by a second-order low-pass filter, is followed by a simplified inner hair cell circuit and a spiking neuron circuit. When the neuron spikes, an address event is generated on the asynchronous data bus. We present the results of the chip characterization and the results of an interaural time difference based sound localization experiment using the address event representation (AER) EAR. The chip was fabricated in a 3-metal 2-poly 0.5-mum CMOS process

[1]  Massimo Barbaro,et al.  A 100/spl times/100 pixel silicon retina for gradient extraction with steering filter capabilities and temporal output coding , 2002 .

[2]  Kwabena Boahen,et al.  Point-to-point connectivity between neuromorphic chips using address events , 2000 .

[3]  Giacomo Indiveri,et al.  Modeling Selective Attention Using a Neuromorphic Analog VLSI Device , 2000, Neural Computation.

[4]  Gert Cauwenberghs,et al.  An analog VLSI chip with asynchronous interface for auditory feature extraction , 1998 .

[5]  Andreas G. Andreou,et al.  AER image filtering architecture for vision-processing systems , 1999 .

[6]  Eugenio Culurciello,et al.  High dynamic range, arbitrated address event representation digital imager , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[7]  Kwabena Boahen,et al.  Communicating neuronal ensembles between neuromorphic chips , 1998 .

[8]  Kwabena Boahen,et al.  A retinomorphic vision system , 1996, IEEE Micro.

[9]  Charles M. Higgins,et al.  A biologically inspired modular VLSI system for visual measurement of self-motion , 2002 .

[10]  Giacomo Indiveri,et al.  A reconfigurable neuromorphic VLSI multi-chip system applied to visual motion computation , 1999, Proceedings of the Seventh International Conference on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems.

[11]  Timothy K. Horiuchi,et al.  An ultrasonic filterbank with spiking neurons , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[12]  André van Schaik Building blocks for electronic spiking neural networks , 2001, Neural Networks.

[13]  Rodney J. Douglas,et al.  A pulse-coded communications infrastructure for neuromorphic systems , 1999 .

[14]  Richard F. Lyon,et al.  An analog electronic cochlea , 1988, IEEE Trans. Acoust. Speech Signal Process..

[15]  André van Schaik,et al.  Improved Silicon Cochlea using Compatible Lateral Bipolar Transistors , 1995, NIPS.

[16]  Shih-Chii Liu,et al.  Temporal coding in a silicon network of integrate-and-fire neurons , 2004, IEEE Transactions on Neural Networks.

[17]  Gert Cauwenberghs,et al.  Analog VLSI spiking neural network with address domain probabilistic synapses , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[18]  Richard F. Lyon,et al.  Improved implementation of the silicon cochlea , 1992 .

[19]  R Meddis,et al.  Analog very large-scale integrated (VLSI) implementation of a model of amplitude-modulation sensitivity in the auditory brainstem. , 1999, The Journal of the Acoustical Society of America.

[20]  Eric A. Vittoz,et al.  An integrated cortical layer for orientation enhancement , 1997 .

[21]  John Wawrzynek,et al.  A multi-sender asynchronous extension to the AER protocol , 1995, Proceedings Sixteenth Conference on Advanced Research in VLSI.

[22]  André van Schaik,et al.  Spike response properties of an AER EAR , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[23]  André van Schaik,et al.  AER EAR: A Matched Silicon Cochlea Pair With Address Event Representation Interface , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  Shihab Shamma,et al.  A Neuromorphic Sound Localizer for a Smart MEMS System , 2003 .

[25]  Tobi Delbrück,et al.  Orientation-Selective aVLSI Spiking Neurons , 2001, NIPS.

[26]  G. F. Kuhn Model for the interaural time differences in the azimuthal plane , 1977 .

[27]  A. van Schaik,et al.  An Analog VLSI Model of Periodicity Extraction in the Human Auditory System , 1999 .