A Parallel Code for LES of Compressible Swirling Jet Flow Undergoing Vortex Breakdown

Swirling jets undergoing vortex breakdown occur in many technical applications, e.g. vortex burners, turbines and jet engines. To simulate the highly nonlinear dynamics of the flow, it is necessary to use high-order numerical methods, leading to increased computational cost. To be able to perform simulations in acceptable turn-around time, an available LES code for solving the filtered compressible Navier-Stokes equations in cylindrical coordinates using compact finite-difference schemes was parallelized for massively-parallel architectures. The parallelization was done following the ghost-cell approach for filtering in the three spatial directions. The inter-process communication is handled using the message passing interface (MPI). The weak and strong scaling properties of the code indicate that it can be used for massively parallel simulations using several thousand processors. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)