Subgradient Method for Convex Feasibility on Riemannian Manifolds

In this paper, a subgradient type algorithm for solving convex feasibility problem on Riemannian manifold is proposed and analysed. The sequence generated by the algorithm converges to a solution of the problem, provided the sectional curvature of the manifold is non-negative. Moreover, assuming a Slater type qualification condition, we analyse a variant of the first algorithm, which generates a sequence with finite convergence property, i.e., a feasible point is obtained after a finite number of iterations. Some examples motivating the application of the algorithm for feasibility problems, nonconvex in the usual sense, are considered.

[1]  F. Clarke,et al.  Dini Derivative and a Characterization for Lipschitz and Convex Functions on Riemannian Manifolds , 2006 .

[2]  Tamás Rapcsák,et al.  Smooth Nonlinear Optimization in Rn , 1997 .

[3]  J. H. Wang,et al.  Convergence of Newton’s Method for Sections on Riemannian Manifolds , 2011, J. Optim. Theory Appl..

[4]  Yair Censor,et al.  Cyclic subgradient projections , 1982, Math. Program..

[5]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[6]  P. L. Combettes,et al.  The Convex Feasibility Problem in Image Recovery , 1996 .

[7]  Felipe Alvarez,et al.  A Unifying Local Convergence Result for Newton's Method in Riemannian Manifolds , 2008, Found. Comput. Math..

[8]  T. Rapcsák Geodesic convexity in nonlinear optimization , 1991 .

[9]  Yanwei Zhang,et al.  Approximation of functions on the Sobolev space on the sphere in the average case setting , 2009, J. Complex..

[10]  João X. da Cruz Neto,et al.  Convex- and Monotone-Transformable Mathematical Programming Problems and a Proximal-Like Point Method , 2006, J. Glob. Optim..

[11]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[12]  Chong Li,et al.  EXTENDED NEWTON’S METHOD FOR MAPPINGS ON RIEMANNIAN MANIFOLDS WITH VALUES IN A CONE , 2009 .

[13]  O. P. Ferreira Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds , 2006 .

[14]  Chong Li,et al.  Existence of solutions for variational inequalities on Riemannian manifolds , 2009 .

[15]  Tamás Rapcsák,et al.  Local Convexity on Smooth Manifolds , 2005 .

[16]  Alfredo N. Iusem,et al.  On the projected subgradient method for nonsmooth convex optimization in a Hilbert space , 1998, Math. Program..

[17]  S. Yau Mathematics and its applications , 2002 .

[18]  D. Bertsekas,et al.  Incremental subgradient methods for nondifferentiable optimization , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[19]  Chong Li,et al.  Newton's method for sections on Riemannian manifolds , 2008 .

[20]  S. Németh Variational inequalities on Hadamard manifolds , 2003 .

[21]  Y. Censor,et al.  On the use of Cimmino's simultaneous projections method for computing a solution of the inverse problem in radiation therapy treatment planning , 1988 .

[22]  Chong Li,et al.  Smale's point estimate theory for Newton's method on Lie groups , 2009, J. Complex..

[23]  Paulo Roberto Oliveira,et al.  Proximal point method for a special class of nonconvex functions on Hadamard manifolds , 2008, 0812.2201.

[24]  Boris Polyak Minimization of unsmooth functionals , 1969 .

[25]  J. H. Wang,et al.  Monotone and Accretive Vector Fields on Riemannian Manifolds , 2010 .

[26]  Pini Gurfil,et al.  On The Behavior of Subgradient Projections Methods for Convex Feasibility Problems in Euclidean Spaces , 2008, SIAM J. Optim..

[27]  C. Udriste,et al.  Convex Functions on Riemannian Manifolds , 1994 .

[28]  Chong Li,et al.  Kantorovich's theorems for Newton's method for mappings and optimization problems on Lie groups , 2011 .

[29]  Paranjothi Pillay,et al.  Iterative approaches to convex feasibility problems in Banach spaces , 2006 .

[30]  O. P. Ferreira,et al.  Subgradient Algorithm on Riemannian Manifolds , 1998 .

[31]  Yu. S. Ledyaev,et al.  Nonsmooth analysis on smooth manifolds , 2007 .

[32]  Chong Li,et al.  Monotone vector fields and the proximal point algorithm on Hadamard manifolds , 2009 .

[33]  P. Absil,et al.  An implicit trust-region method on Riemannian manifolds , 2008 .

[34]  Alfredo N. Iusem,et al.  Iterative Methods of Solving Stochastic Convex Feasibility Problems and Applications , 2000, Comput. Optim. Appl..

[35]  O. P. Ferreira,et al.  Proximal Point Algorithm On Riemannian Manifolds , 2002 .

[36]  Chong Li,et al.  Newton's method for sections on Riemannian manifolds: Generalized covariant alpha-theory , 2008, J. Complex..

[37]  Ioannis K. Argyros,et al.  Newton’s method on Lie groups , 2009 .

[38]  L. Marks,et al.  A feasible set approach to the crystallographic phase problem. , 1999, Acta crystallographica. Section A, Foundations of crystallography.

[39]  I. Holopainen Riemannian Geometry , 1927, Nature.

[40]  Alfredo N. Iusem,et al.  A primal dual modified subgradient algorithm with sharp Lagrangian , 2010, J. Glob. Optim..