More on deterministic and nondeterministic finite cover automata

Finite languages are an important sub-regular language family, which were intensively studied during the last two decades in particular from a descriptional complexity perspective. An important contribution to the theory of finite languages are the deterministic and the recently introduced nondeterministic finite cover automata (DFCAs and NFCAs, respectively) as an alternative representation of finite languages by ordinary finite automata. We compare these two types of cover automata from a descriptional complexity point of view, showing that these devices have a lot in common with ordinary finite automata. In particular, we study how to adapt lower bound techniques for nondeterministic finite automata to NFCAs such as, e.g., the biclique edge cover technique, solving an open problem from the literature. Moreover, the trade-off of conversions between DFCAs and NFCAs as well as between finite cover automata and ordinary finite automata are investigated. Finally, we present some results on the average size of finite cover automata.

[1]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[2]  Andrei Paun,et al.  Incremental construction of minimal deterministic finite cover automata , 2006, Theor. Comput. Sci..

[3]  Andrei Paun,et al.  Results on Transforming NFA into DFCA , 2005, Fundam. Informaticae.

[4]  Cezar Câmpeanu,et al.  The Maximum State Complexity for Finite Languages , 2004, J. Autom. Lang. Comb..

[5]  Andrei Paun,et al.  An O(n2) Algorithm for Constructing Minimal Cover Automata for Finite Languages , 2000, CIAA.

[6]  Franck Guingne,et al.  Similarity relations and cover automata , 2005, RAIRO Theor. Informatics Appl..

[7]  Juraj Hromkovic,et al.  Descriptional Complexity of Finite Automata: Concepts and Open Problems , 2002, J. Autom. Lang. Comb..

[8]  Juraj Hromkovic,et al.  Communication Complexity and Parallel Computing , 1997, Texts in Theoretical Computer Science An EATCS Series.

[9]  Cezar Câmpeanu,et al.  Non-Deterministic Finite Cover Automata , 2015, Sci. Ann. Comput. Sci..

[10]  Georg Schnitger,et al.  Minimizing nfa's and regular expressions , 2007, J. Comput. Syst. Sci..

[11]  Markus Holzer,et al.  On the average state and transition complexity of finite languages , 2007, Theor. Comput. Sci..

[12]  Jeffrey Shallit,et al.  On the Number of Distinct Languages Accepted by Finite Automata with n States , 2002, DCFS.

[13]  Henry N. Adorna 3-Party Message Complexity is Better than 2-Party Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic Finite Automata , 2001, DCFS.

[14]  Andrei Paun,et al.  An Efficient Algorithm for Constructing Minimal Cover Automata for Finite Languages , 2002, Int. J. Found. Comput. Sci..

[15]  Claudio L. Lucchesi,et al.  Applications of finite automata representing large vocabularies , 1993, Softw. Pract. Exp..

[16]  Jean-Marc Champarnaud,et al.  A maxmin problem on finite automata , 1989, Discret. Appl. Math..

[17]  Andrei Paun,et al.  The number of similarity relations and the number of minimal deterministic finite cover automata , 2002, CIAA'02.

[18]  J. Orlin Contentment in graph theory: Covering graphs with cliques , 1977 .

[19]  Markus Holzer,et al.  Finding Lower Bounds for Nondeterministic State Complexity Is Hard , 2006, Developments in Language Theory.

[20]  Jean-Camille Birget,et al.  Intersection and Union of Regular Languages and State Complexity , 1992, Inf. Process. Lett..

[21]  Markus Holzer,et al.  Results on the Average State and Transition Complexity of Finite Automata Accepting Finite Languages (Extended Abstract) , 2006, DCFS.

[22]  MARKUS HOLZER,et al.  From Equivalence to Almost-Equivalence, and beyond: Minimizing Automata with Errors , 2013, Int. J. Found. Comput. Sci..

[23]  Nikos Fakotakis,et al.  Incremental Construction of Compact Acyclic NFAs , 2001, ACL.

[24]  Sheng Yu,et al.  NFA to DFA Transformation for Finite Languages over Arbitrary Alphabets , 1998, J. Autom. Lang. Comb..

[25]  Michael A. Harrison,et al.  Introduction to formal language theory , 1978 .

[26]  Sheng Yu Cover Automata for Finite Language , 2007, Bull. EATCS.

[27]  Pedro García,et al.  A Note on Minimal Cover-Automata for Finite Languages , 2004, Bull. EATCS.

[28]  Heiko Körner,et al.  A Time And Space Efficient Algorithm For Minimizing Cover Automata For Finite Languages , 2003, Int. J. Found. Comput. Sci..

[29]  Jeffrey Shallit,et al.  A Lower Bound Technique for the Size of Nondeterministic Finite Automata , 1996, Inf. Process. Lett..

[30]  A. R. Meyer,et al.  Economy of Description by Automata, Grammars, and Formal Systems , 1971, SWAT.

[31]  Sheng Yu,et al.  Minimal cover-automata for finite languages , 1998, Theor. Comput. Sci..

[32]  Hing Leung Separating Exponentially Ambiguous Finite Automata from Polynomially Ambiguous Finite Automata , 1998, SIAM J. Comput..

[33]  Heiko Körner,et al.  On minimizing cover automata for finite languages in O(n log n) time , 2002, CIAA'02.

[34]  Andrei Paun,et al.  Tight Bounds for the State Complexity of Deterministic Cover Automata , 2006, DCFS.

[35]  Laura Giambruno,et al.  The Average State Complexity of Rational Operations on Finite Languages , 2010, Int. J. Found. Comput. Sci..

[36]  Nelma Moreira,et al.  Expected Compression Ratio for DFCA: experimental average case analysis , 2011 .

[37]  J. Brzozowski Canonical regular expressions and minimal state graphs for definite events , 1962 .

[38]  Artur Jez,et al.  Computing All ℓ-Cover Automata Fast , 2011, CIAA.

[39]  Claude E. Shannon,et al.  The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..

[40]  FRANK R. MOORE,et al.  On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata , 1971, IEEE Transactions on Computers.