Thalamocortical oscillations: local control of EEG slow waves.

This article starts with a brief review of the thalamocortical system architecture, which is composed of the projecting thalamic nuclei, the thalamic reticular nucleus, and the neocortex. Then we provide a description of the three states of vigilances followed by a detailed review of major brain rhythms present in the thalamocortical system, ranging from very slow to very fast oscillations. We provide descriptions of known mechanisms and hypotheses for unknown mechanisms for the generation of the different rhythms. The last part offers a detailed review on sleep slow oscillation describing its properties in the thalamocortical system, proposing a mechanism of generation of active states and a description of their propagation.

[1]  K. Harris,et al.  Laminar Structure of Spontaneous and Sensory-Evoked Population Activity in Auditory Cortex , 2009, Neuron.

[2]  Maria V. Sanchez-Vives,et al.  Rhythmic spontaneous activity in the piriform cortex. , 2008, Cerebral cortex.

[3]  G. Ascoli,et al.  Dendritic excitability and neuronal morphology as determinants of synaptic efficacy. , 2009, Journal of neurophysiology.

[4]  B. Connors,et al.  Electrophysiological properties of neocortical neurons in vitro. , 1982, Journal of neurophysiology.

[5]  D. Paré,et al.  Differential impact of miniature synaptic potentials on the soma and dendrites of pyramidal neurons in vivo. , 1997, Journal of neurophysiology.

[6]  D. Barth,et al.  Spatiotemporal organization of fast (>200 Hz) electrical oscillations in rat Vibrissa/Barrel cortex. , 1999, Journal of neurophysiology.

[7]  J SZENTAGOTHAI,et al.  THE USE OF DEGENERATION METHODS IN THE INVESTIGATION OF SHORT NEURONAL CONNEXIONS. , 1965, Progress in brain research.

[8]  Alain Destexhe,et al.  Inhibition Determines Membrane Potential Dynamics and Controls Action Potential Generation in Awake and Sleeping Cat Cortex , 2007, The Journal of Neuroscience.

[9]  M. Steriade,et al.  Focal synchronization of ripples (80-200 Hz) in neocortex and their neuronal correlates. , 2001, Journal of neurophysiology.

[10]  A. Scheibel,et al.  The organization of the nucleus reticularis thalami: a Golgi study. , 1966, Brain research.

[11]  J. Magee Dendritic integration of excitatory synaptic input , 2000, Nature Reviews Neuroscience.

[12]  B. Sakmann,et al.  Action potential initiation and propagation in rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[13]  R. Traub,et al.  Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro , 1998, Nature.

[14]  E. Fetz,et al.  Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[15]  P. Barbaresi,et al.  Topographical relations between ipsilateral cortical afferents and callosal neurons in the second somatic sensory area of cats , 2004, The Journal of comparative neurology.

[16]  M. Deschenes,et al.  The deafferented reticular thalamic nucleus generates spindle rhythmicity. , 1987, Journal of neurophysiology.

[17]  M. Steriade,et al.  Natural waking and sleep states: a view from inside neocortical neurons. , 2001, Journal of neurophysiology.

[18]  W. Singer,et al.  Synchronization of Visual Responses between the Cortex, Lateral Geniculate Nucleus, and Retina in the Anesthetized Cat , 1998, The Journal of Neuroscience.

[19]  James E. Vaughn,et al.  GABA neurons are the major cell type of the nucleus reticularis thalami , 1980, Brain Research.

[20]  G Buzsáki,et al.  Cellular–Synaptic Generation of Sleep Spindles, Spike-and-Wave Discharges, and Evoked Thalamocortical Responses in the Neocortex of the Rat , 1997, The Journal of Neuroscience.

[21]  M. Steriade,et al.  Neocortical very fast oscillations (ripples, 80-200 Hz) during seizures: intracellular correlates. , 2003, Journal of neurophysiology.

[22]  G. Buzsáki,et al.  Sequential structure of neocortical spontaneous activity in vivo , 2007, Proceedings of the National Academy of Sciences.

[23]  W. Freeman The physiology of perception. , 1991, Scientific American.

[24]  I. Soltesz,et al.  Low‐frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. , 1991, The Journal of physiology.

[25]  Nima Dehghani,et al.  The Human K-Complex Represents an Isolated Cortical Down-State , 2009, Science.

[26]  M. Deschenes,et al.  Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. , 1985, Journal of neurophysiology.

[27]  R. Metherate,et al.  Ionic flux contributions to neocortical slow waves and nucleus basalis- mediated activation: whole-cell recordings in vivo , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  G. Buzsáki,et al.  tFast Network Oscillations in the Hippocampal CA1 Region of the Behaving Rat , 1999, The Journal of Neuroscience.

[29]  B. Connors,et al.  Differential Regulation of Neocortical Synapses by Neuromodulators and Activity , 1997, Neuron.

[30]  P. Achermann,et al.  Low-frequency (<1Hz) oscillations in the human sleep electroencephalogram , 1997, Neuroscience.

[31]  D. Paré,et al.  Spontaneous activity of the perirhinal cortex in behaving cats , 1999, Neuroscience.

[32]  Sheer De,et al.  Focused arousal and the cognitive 40-Hz event-related potentials: differential diagnosis of Alzheimer's disease. , 1989 .

[33]  R. Llinás,et al.  Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[34]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[35]  I. Timofeev,et al.  Spontaneous field potentials influence the activity of neocortical neurons during paroxysmal activities in vivo , 2003, Neuroscience.

[36]  Sampsa Vanhatalo,et al.  Nonneuronal origin of CO2-related DC EEG shifts: an in vivo study in the cat. , 2004, Journal of neurophysiology.

[37]  Jean-Michel Deniau,et al.  Distinct Patterns of Striatal Medium Spiny Neuron Activity during the Natural Sleep–Wake Cycle , 2006, The Journal of Neuroscience.

[38]  Maxim Bazhenov,et al.  Experimental evidence and modeling studies support a synchronizing role for electrical coupling in the cat thalamic reticular neurons in vivo , 2004, The European journal of neuroscience.

[39]  M. Steriade,et al.  Electrophysiology of a slow (0.5‐4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. , 1992, The Journal of physiology.

[40]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[41]  R. Morison,et al.  A STUDY OF THALAMO-CORTICAL RELATIONS , 1941 .

[42]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[43]  Cortex Cerebri: Performance, Structural and Functional Organization of the Cortex , 1996 .

[44]  R. Fisher,et al.  High-frequency EEG activity at the start of seizures. , 1992, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[45]  G. Moruzzi,et al.  Brain stem reticular formation and activation of the EEG. , 1949, Electroencephalography and clinical neurophysiology.

[46]  I. Soltesz,et al.  Two inward currents and the transformation of low‐frequency oscillations of rat and cat thalamocortical cells. , 1991, The Journal of physiology.

[47]  R. Spreafico,et al.  Cortical relay neurons and interneurons in the N. ventralis posterolateralis of cats: A horseradish peroxidase, electron-microscopic, golgi and immunocytochemical study , 1983, Neuroscience.

[48]  Igor Timofeev,et al.  Modulation of synaptic transmission in neocortex by network activities , 2005, The European journal of neuroscience.

[49]  D. Contreras,et al.  Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of rhythmic recurrent activity in neocortex , 2000, Nature Neuroscience.

[51]  D. McCormick,et al.  Noradrenergic and serotonergic modulation of a hyperpolarization‐activated cation current in thalamic relay neurones. , 1990, The Journal of physiology.

[52]  David S. Greenberg,et al.  Population imaging of ongoing neuronal activity in the visual cortex of awake rats , 2008, Nature Neuroscience.

[53]  E. G. Jones,et al.  Predominance of corticothalamic synaptic inputs to thalamic reticular nucleus neurons in the rat , 1999, The Journal of comparative neurology.

[54]  Charles L. Wilson,et al.  Local Generation of Fast Ripples in Epileptic Brain , 2002, The Journal of Neuroscience.

[55]  Maxim Bazhenov,et al.  Thalamocortical oscillations , 2006, Scholarpedia.

[56]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[57]  C. Petersen,et al.  Membrane Potential Dynamics of GABAergic Neurons in the Barrel Cortex of Behaving Mice , 2010, Neuron.

[58]  N. A. ALADJALOVA,et al.  Infra-Slow Rhythmic Oscillations of The Steady Potential of the Cerebral Cortex , 1957, Nature.

[59]  E. White,et al.  Synaptic connections of callosal projection neurons in the vibrissal region of mouse primary motor cortex: An electron microscopic/horseradish peroxidase study , 1986, The Journal of comparative neurology.

[60]  Mario Rosanova,et al.  Neuronal mechanisms mediating the variability of somatosensory evoked potentials during sleep oscillations in cats , 2005, The Journal of physiology.

[61]  E. G. Jones,et al.  Differences in quantal amplitude reflect GluR4- subunit number at corticothalamic synapses on two populations of thalamic neurons , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[62]  M Steriade,et al.  Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  J. Bouyer,et al.  Fast fronto-parietal rhythms during combined focused attentive behaviour and immobility in cat: cortical and thalamic localizations. , 1981, Electroencephalography and clinical neurophysiology.

[64]  D. McCormick,et al.  Mechanisms of oscillatory activity in guinea‐pig nucleus reticularis thalami in vitro: a mammalian pacemaker. , 1993, The Journal of physiology.

[65]  David A. McCormick,et al.  Modulation of a pacemaker current through Ca2+-induced stimulation of cAMP production , 1999, Nature Neuroscience.

[66]  Igor Timofeev,et al.  Posttraumatic Epilepsy: The Roles of Synaptic Plasticity , 2010, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[67]  Igor Timofeev,et al.  Impact of intrinsic properties and synaptic factors on the activity of neocortical networks in vivo , 2000, Journal of Physiology-Paris.

[68]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[69]  G. Buzsáki,et al.  Interaction between neocortical and hippocampal networks via slow oscillations. , 2005, Thalamus & related systems.

[70]  D. McCormick Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity , 1992, Progress in Neurobiology.

[71]  P. Goldman-Rakic,et al.  Prefrontal Microcircuits: Membrane Properties and Excitatory Input of Local, Medium, and Wide Arbor Interneurons , 2001, The Journal of Neuroscience.

[72]  D Contreras,et al.  Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat. , 1996, The Journal of physiology.

[73]  V. Crunelli,et al.  Properties and origin of spikelets in thalamocortical neurones in vitro , 2002, Neuroscience.

[74]  Thomas Budde,et al.  Lack of Regulation by Intracellular Ca2+ of the Hyper Polarization‐Activated Cation Current in Rat Thalamic Neurones , 1997, The Journal of physiology.

[75]  S. Hestrin,et al.  Electrical synapses between Gaba-Releasing interneurons , 2001, Nature Reviews Neuroscience.

[76]  E. G. Jones,et al.  The morphology of physiologically identified GABAergic neurons in the somatic sensory part of the thalamic reticular nucleus in the cat , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  J. C. Anderson,et al.  Polyneuronal innervation of spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[78]  Igor Timofeev,et al.  27 Pathophysiology of Neocortical Epileptic Seizures , 2010 .

[79]  R. Traub,et al.  A mechanism for generation of long-range synchronous fast oscillations in the cortex , 1996, Nature.

[80]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[81]  P. Barbaresi,et al.  Callosal connections of the somatic sensory areas II and IV in the cat , 1989, The Journal of comparative neurology.

[82]  W. Rall Core Conductor Theory and Cable Properties of Neurons , 2011 .

[83]  G. Stuart,et al.  Dependence of EPSP Efficacy on Synapse Location in Neocortical Pyramidal Neurons , 2002, Science.

[84]  Sean L. Hill,et al.  The Sleep Slow Oscillation as a Traveling Wave , 2004, The Journal of Neuroscience.

[85]  Maxim Bazhenov,et al.  Membrane bistability in thalamic reticular neurons during spindle oscillations. , 2005, Journal of neurophysiology.

[86]  D. McCormick,et al.  What Stops Synchronized Thalamocortical Oscillations? , 1996, Neuron.

[87]  R. Llinás,et al.  Coherent 40-Hz oscillation characterizes dream state in humans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[88]  A. Konnerth,et al.  Gamma-frequency oscillations: a neuronal population phenomenon, regulated by synaptic and intrinsic cellular processes, and inducing synaptic plasticity , 1998, Progress in Neurobiology.

[89]  R. Yuste,et al.  Attractor dynamics of network UP states in the neocortex , 2003, Nature.

[90]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[91]  M Steriade,et al.  Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. , 1996, Journal of neurophysiology.

[92]  E. Halgren,et al.  Laminar analysis of slow wave activity in humans. , 2010, Brain : a journal of neurology.

[93]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[94]  R. Llinás,et al.  Brainstem control of wakefulness and sleep, Steriade, McCarley. Plenum Press, New York (1990), Price $85.00 , 1991 .

[95]  S. Hunt,et al.  Neural elements containing glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the rat; Immunohistochemical studies by light and electron microscopy , 1983, Neuroscience.

[96]  F. Helmchen,et al.  Background Synaptic Activity Is Sparse in Neocortex , 2006, The Journal of Neuroscience.

[97]  T. Sejnowski,et al.  A model of spindle rhythmicity in the isolated thalamic reticular nucleus. , 1994, Journal of neurophysiology.

[98]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[99]  P J Allen,et al.  Very high-frequency rhythmic activity during SEEG suppression in frontal lobe epilepsy. , 1991, Electroencephalography and clinical neurophysiology.

[100]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[101]  T. J. Sejnowski,et al.  Self–sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABAA receptor potentials , 1999, Nature Neuroscience.

[102]  J. Csicsvari,et al.  Oscillatory Coupling of Hippocampal Pyramidal Cells and Interneurons in the Behaving Rat , 1999, The Journal of Neuroscience.

[103]  J. Bouyer,et al.  From attentiveness to sleep. A topographical analysis of localized "synchronized" activities on the cortex of normal cat and monkey. , 1975, Acta Neurobiologiae Experimentalis.

[104]  Michael M. Halassa,et al.  Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo , 2009, Proceedings of the National Academy of Sciences.

[105]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[106]  M Steriade,et al.  Spiking-bursting activity in the thalamic reticular nucleus initiates sequences of spindle oscillations in thalamic networks. , 2000, Journal of neurophysiology.

[107]  Michikazu Matsumura,et al.  Intracellular synaptic potentials of primate motor cortex neurons during voluntary movement , 1979, Brain Research.

[108]  R. Morison,et al.  ELECTRICAL ACTIVITY OF THE THALAMUS AND BASAL GANGLIA IN DECORTICATE CATS , 1945 .

[109]  M. Steriade,et al.  Neocortical seizures: initiation, development and cessation , 2004, Neuroscience.

[110]  Maxim Volgushev,et al.  Precise Long-Range Synchronization of Activity and Silence in Neocortical Neurons during Slow-Wave Sleep , 2006, The Journal of Neuroscience.

[111]  W. R. Adey,et al.  Firing of neuron pairs in cat association cortex during sleep and wakefulness. , 1970, Journal of neurophysiology.

[112]  E. G. Jones,et al.  Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat , 1995, The Journal of comparative neurology.

[113]  T. Sejnowski,et al.  Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. , 1991, Journal of neurophysiology.

[114]  S. Hestrin,et al.  Spike Transmission and Synchrony Detection in Networks of GABAergic Interneurons , 2001, Science.

[115]  R. Llinás,et al.  The functional states of the thalamus and the associated neuronal interplay. , 1988, Physiological reviews.

[116]  D. Prince,et al.  Cholinergic switching within neocortical inhibitory networks. , 1998, Science.

[117]  Charles L. Wilson,et al.  High‐frequency oscillations in human brain , 1999, Hippocampus.

[118]  D E Sheer Focused arousal and the cognitive 40-Hz event-related potentials: differential diagnosis of Alzheimer's disease. , 1989, Progress in clinical and biological research.

[119]  E. G. Jones,et al.  Thalamic oscillations and signaling , 1990 .

[120]  Florin Amzica,et al.  Generated Seizures . II . Extra-and Intracellular Patterns Spike-Wave Complexes and Fast Components of Cortically , 1998 .

[121]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[122]  C. Nicholson,et al.  Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. , 1975, Journal of neurophysiology.

[123]  U. Mitzdorf,et al.  Prominent excitatory pathways in the cat visual cortex (A 17 and A 18): A current source density analysis of electrically evoked potentials , 1978, Experimental Brain Research.

[124]  R. Traub,et al.  Axo-Axonal Coupling A Novel Mechanism for Ultrafast Neuronal Communication , 2001, Neuron.

[125]  T. Sejnowski,et al.  Control of Spatiotemporal Coherence of a Thalamic Oscillation by Corticothalamic Feedback , 1996, Science.

[126]  M. Steriade,et al.  Electrophysiological properties and input-output organization of callosal neurons in cat association cortex. , 2003, Journal of neurophysiology.

[127]  W H Calvin,et al.  Fast and slow pyramidal tract neurons: an intracellular analysis of their contrasting repetitive firing properties in the cat. , 1976, Journal of neurophysiology.

[128]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[129]  R. Traub,et al.  On the Mechanism of the γ → β Frequency Shift in Neuronal Oscillations Induced in Rat Hippocampal Slices by Tetanic Stimulation , 1999, The Journal of Neuroscience.

[130]  M Steriade,et al.  Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[131]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[132]  D. McCormick,et al.  Cellular mechanisms of a synchronized oscillation in the thalamus. , 1993, Science.

[133]  D. McCormick,et al.  Periodicity of thalamic spindle waves is abolished by ZD7288,a blocker of Ih. , 1998, Journal of neurophysiology.

[134]  R. Traub,et al.  Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. , 2003, Journal of neurophysiology.

[135]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[136]  D. Buxhoeveden,et al.  The minicolumn hypothesis in neuroscience. , 2002, Brain : a journal of neurology.

[137]  G. Buzsáki,et al.  High-Frequency Oscillations in the Output Networks of the Hippocampal–Entorhinal Axis of the Freely Behaving Rat , 1996, The Journal of Neuroscience.

[138]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[139]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[140]  J. Villablanca,et al.  Sleep-wakefulness, EEG and behavioral studies of chronic cats without the thalamus: the 'athalamic' cat. , 1972, Archives italiennes de biologie.

[141]  V. Mountcastle,et al.  Response properties of neurons of cat's somatic sensory cortex to peripheral stimuli. , 1957, Journal of neurophysiology.

[142]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[143]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[144]  R. Douglas,et al.  Recurrent neuronal circuits in the neocortex , 2007, Current Biology.

[145]  G. Tononi,et al.  Cortical Firing and Sleep Homeostasis , 2009, Neuron.

[146]  G. Pfurtscheller,et al.  Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements. , 1992, Neuroreport.

[147]  X. Wang Fast burst firing and short-term synaptic plasticity: A model of neocortical chattering neurons , 1999, Neuroscience.

[148]  Bert Sakmann,et al.  Driver or Coincidence Detector: Modal Switch of a Corticothalamic Giant Synapse Controlled by Spontaneous Activity and Short-Term Depression , 2008, The Journal of Neuroscience.

[149]  Michael A Long,et al.  Electrical Synapses in the Thalamic Reticular Nucleus , 2002, The Journal of Neuroscience.

[150]  D. Contreras,et al.  Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[151]  Michael Okun,et al.  The Subthreshold Relation between Cortical Local Field Potential and Neuronal Firing Unveiled by Intracellular Recordings in Awake Rats , 2010, The Journal of Neuroscience.

[152]  Nikolai F. Rulkov,et al.  Oscillations in Large-Scale Cortical Networks: Map-Based Model , 2004, Journal of Computational Neuroscience.

[153]  C. Petersen,et al.  Correlating whisker behavior with membrane potential in barrel cortex of awake mice , 2006, Nature Neuroscience.

[154]  M Steriade,et al.  Electrophysiological correlates of sleep delta waves. , 1998, Electroencephalography and clinical neurophysiology.

[155]  A. Thomson,et al.  Functional Maps of Neocortical Local Circuitry , 2007, Front. Neurosci..

[156]  Yun Wang,et al.  Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. , 2002, Cerebral cortex.

[157]  Maxim Volgushev,et al.  Origin of Active States in Local Neocortical Networks during Slow Sleep Oscillation , 2010, Cerebral cortex.

[158]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[159]  Paul Antoine Salin,et al.  Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. , 1996, Journal of neurophysiology.

[160]  D. Contreras,et al.  Synchronization of fast (30-40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[161]  M. Deschenes,et al.  The thalamus as a neuronal oscillator , 1984, Brain Research Reviews.

[162]  B. Cragg The density of synapses and neurones in the motor and visual areas of the cerebral cortex. , 1967, Journal of anatomy.

[163]  C. Sotelo,et al.  Ultrastructural features of the isolated suprasylvian gyrus in the cat , 1974, The Journal of comparative neurology.

[164]  Terrence J. Sejnowski,et al.  Contribution of intrinsic and synaptic factors in the desynchronization of thalamic oscillatory activity , 2001 .

[165]  D. Contreras,et al.  Voltage-Sensitive Dye Imaging of Neocortical Spatiotemporal Dynamics to Afferent Activation Frequency , 2001, The Journal of Neuroscience.

[166]  P Gloor,et al.  The cortical electromicrophysiology of pathological delta waves in the electroencephalogram of cats. , 1977, Electroencephalography and clinical neurophysiology.

[167]  D. Contreras,et al.  The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[168]  A. Graybiel,et al.  Coexistence of glutamic acid decarboxylase- and somatostatin-like immunoreactivity in neurons of the feline nucleus reticularis thalami , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[169]  T I Tóth,et al.  The ‘window’ component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones , 1997, The Journal of physiology.

[170]  J. Poulet,et al.  Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice , 2008, Nature.

[171]  V. Mountcastle Perceptual Neuroscience: The Cerebral Cortex , 1998 .

[172]  M. Steriade,et al.  Dynamic properties of corticothalamic neurons and local cortical interneurons generating fast rhythmic (30-40 Hz) spike bursts. , 1998, Journal of neurophysiology.

[173]  R. Gerard,et al.  BRAIN POTENTIALS DURING SLEEP , 1937 .

[174]  Hannah Monyer,et al.  A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[175]  T. Sejnowski,et al.  Origin of slow cortical oscillations in deafferented cortical slabs. , 2000, Cerebral cortex.

[176]  D. McCormick,et al.  Ionic Mechanisms Underlying Repetitive High-Frequency Burst Firing in Supragranular Cortical Neurons , 2000, The Journal of Neuroscience.

[177]  M. Steriade,et al.  Fast (mainly 30–100 Hz) oscillations in the cat cerebellothalamic pathway and their synchronization with cortical potentials , 1997, The Journal of physiology.

[178]  D Contreras,et al.  Mechanisms of long‐lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. , 1996, The Journal of physiology.

[179]  B. Connors,et al.  Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4. , 2005, Journal of neurophysiology.

[180]  T. Sejnowski,et al.  [Letters to nature] , 1996, Nature.

[181]  F. Dudek,et al.  Intracellular correlates of fast (>200 Hz) electrical oscillations in rat somatosensory cortex. , 2000, Journal of neurophysiology.

[182]  Vincenzo Crunelli,et al.  ATP-Dependent Infra-Slow (<0.1 Hz) Oscillations in Thalamic Networks , 2009, PloS one.

[183]  Charles L. Wilson,et al.  Hippocampal and Entorhinal Cortex High‐Frequency Oscillations (100–500 Hz) in Human Epileptic Brain and in Kainic Acid‐Treated Rats with Chronic Seizures , 1999, Epilepsia.

[184]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[185]  D. McCormick,et al.  Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. , 1995, Journal of neurophysiology.

[186]  I. Timofeev,et al.  Chapter 1 MECHANISMS AND BIOLOGICAL ROLE OF THALAMOCORTICAL OSCILLATIONS , 2005 .

[187]  E. G. Jones,et al.  Synaptic distribution of afferents from reticular nucleus in ventroposterior nucleus of cat thalamus , 1995, The Journal of comparative neurology.

[188]  Maxim Volgushev,et al.  Detection of active and silent states in neocortical neurons from the field potential signal during slow-wave sleep. , 2007, Cerebral cortex.

[189]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[190]  R. Traub,et al.  High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions , 1999, Neuroscience.