Cellular Automata and Discrete Complex Systems

In this mini-survey we discuss time complexity and program size results for universal Turing machines, tag systems, cellular automata, and other simple models of computation. We discuss results that show that many of the simplest known models of computation including the smallest known universal Turing machines and the elementary cellular automaton Rule 110 are efficient simulators of Turing machines. We also recall a recent result where the halting problem for tag systems with only 2 symbols (the minimum possible) is proved undecidable. This result has already yielded applications including a significant improvement on previous undecidability bounds for the Post correspondence problem and the matrix mortality problem.

[1]  H. Hrgovčić Discrete representations of the n-dimensional wave equation , 1992 .

[2]  S. R. Seidel Language recognition and the synchronization of cellular automata. , 1979 .

[3]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[4]  Véronique Terrier,et al.  Signals in One-Dimensional Cellular Automata , 1999, Theor. Comput. Sci..

[5]  Tommaso Toffoli,et al.  Action, or the fungibility of computation , 1999 .

[6]  Norman Margolus,et al.  Physics and Computation , 1987 .

[7]  Giancarlo Mauri,et al.  Transformations of the One-Dimensional Cellular Automata Rule Space , 1997, Parallel Comput..

[8]  Tommaso Toffoli,et al.  Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations in M , 1984 .

[9]  Genaro Juárez Martínez A Note on Elementary Cellular Automata Classification , 2013, J. Cell. Autom..

[10]  Norman Margolus,et al.  Universal Cellular Automata Based on the Collisions of Soft Spheres , 2008, Collision-Based Computing.

[11]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[12]  Petr Kůrka,et al.  Topological and symbolic dynamics , 2003 .

[13]  Petr Kůrka,et al.  Topological Dynamics of Cellular Automata , 2001 .

[14]  Hidenosuke Nishio,et al.  Fault Tolerant Cellular Spaces , 1975, J. Comput. Syst. Sci..

[15]  Martin Kutrib,et al.  Cellular Automata and Language Theory , 2009, Encyclopedia of Complexity and Systems Science.

[16]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[17]  Martin Kutrib,et al.  Space- and Time-Bounded Nondeterminism for Cellular Automata , 2003, Fundam. Informaticae.

[18]  Alexander Okhotin Comparing Linear Conjunctive Languages to Subfamilies of the Context-Free Languages , 2011, SOFSEM.

[19]  J. Patrick Ryan The shift and commutativity , 2005, Mathematical systems theory.

[20]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[21]  Jarkko Kari The Nilpotency Problem of One-Dimensional Cellular Automata , 1992, SIAM J. Comput..

[22]  Mark Smith,et al.  Representations of geometrical and topological quantities in cellular automata , 1991 .

[23]  Mike Boyle,et al.  OPEN PROBLEMS IN SYMBOLIC DYNAMICS , 2008 .