Worst-case multi-objective error estimation and adaptivity
暂无分享,去创建一个
E. H. van Brummelen | E. H. Brummelen | G. Zwieten | V. Brummelen | S. Zhuk | G. J. van Zwieten | van Gj GertJan Zwieten | S. Zhuk | S. Zhuk
[1] J. Tinsley Oden,et al. Adaptive multiscale modeling of polymeric materials with Arlequin coupling and Goals algorithms , 2009 .
[2] Mario S. Mommer,et al. A Goal-Oriented Adaptive Finite Element Method with Convergence Rates , 2009, SIAM J. Numer. Anal..
[3] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[4] I. Akkerman,et al. Goal-oriented error estimation and adaptivity for fluid–structure interaction using exact linearized adjoints , 2011 .
[5] René de Borst,et al. Goal-Oriented Error Estimation and Adaptivity for Free-Boundary Problems: The Domain-Map Linearization Approach , 2010, SIAM J. Sci. Comput..
[6] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[7] T. Wick. Error analysis and partition-of-unity based dual-weighted residual mesh adaptivity for phase-field fracture problems , 2015 .
[8] Claes Johnson,et al. Adaptive finite element methods in computational mechanics , 1992 .
[9] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[10] Ricardo H. Nochetto,et al. Multiscale and Adaptivity: Modeling, Numerics and Applications , 2012 .
[11] Rolf Rannacher,et al. Adaptive Finite Element Discretization of Flow Problems for Goal-Oriented Model Reduction , 2009 .
[12] R. Hartmann,et al. Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .
[13] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[14] Claes Johnson,et al. Adaptive finite element methods for diffusion and convection problems , 1990 .
[15] E. Stein,et al. Finite Element Methods for Elasticity with Error‐controlled Discretization and Model Adaptivity , 2007 .
[16] Sergiy Zhuk. State estimation for a dynamical system described by a linear equation with unknown parameters , 2009 .
[17] Cv Clemens Verhoosel,et al. Goal-adaptive Isogeometric Analysis with hierarchical splines , 2014 .
[18] V. Brummelen,et al. Goal‐oriented adaptive methods for a Boltzmann‐type equation , 2011 .
[19] Patrick Ciarlet,et al. Analysis of the Scott–Zhang interpolation in the fractional order Sobolev spaces , 2013, J. Num. Math..
[20] Thomas Richter,et al. Goal-oriented error estimation for fluid–structure interaction problems , 2012 .
[21] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[22] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[23] Mats G. Larson,et al. Adaptive finite element approximation of multiphysics problems: A fluid–structure interaction model problem , 2010 .
[24] J. Tinsley Oden,et al. Computable Error Estimators and Adaptive Techniques for Fluid Flow Problems , 2003 .
[25] Thomas Wick,et al. Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity , 2016 .
[26] F. Suttmeier. General approach for a posteriori error estimates for finite element solutions of variational inequalities , 2001 .
[27] Sergiy Zhuk,et al. A macroscopic traffic data assimilation framework based on Fourier-Galerkin method and minimax estimation , 2013, 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013).
[28] Claes Johnson,et al. Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.
[29] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[30] Ralf Hartmann,et al. Multitarget Error Estimation and Adaptivity in Aerodynamic Flow Simulations , 2008, SIAM J. Sci. Comput..
[31] S. McKenna,et al. Shock Capturing Data Assimilation Algorithm for 1D Shallow Water Equations , 2016 .
[32] Mats G. Larson,et al. Adaptive finite element approximation of multiphysics problems , 2007 .
[33] Thomas Richter,et al. Variational localizations of the dual weighted residual estimator , 2015, J. Comput. Appl. Math..
[34] Isabelle Herlin,et al. Divergence-Free Motion Estimation , 2012, ECCV.
[35] P. Bauman,et al. Goal-oriented model adaptivity for viscous incompressible flows , 2015 .
[36] Sergiy M.Zhuk. Minimax state estimation for linear discrete-time differential-algebraic equations , 2008, 0807.2769.
[37] Michael Feischl,et al. An Abstract Analysis of Optimal Goal-Oriented Adaptivity , 2015, SIAM J. Numer. Anal..
[38] J. Tinsley Oden,et al. Goal‐oriented error estimation for Cahn–Hilliard models of binary phase transition , 2011 .
[39] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[40] Michael J. Holst,et al. Generalized Green's Functions and the Effective Domain of Influence , 2005, SIAM J. Sci. Comput..
[41] E. Harald van Brummelen,et al. On the adjoint-consistent formulation of interface conditions in goal-oriented error estimation and adaptivity for fluid-structure interaction , 2010 .
[42] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .
[43] Ralf Hartmann,et al. Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..
[44] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[45] René de Borst,et al. Goal-Oriented Error Estimation and Adaptivity for Free-Boundary Problems: The Shape-Linearization Approach , 2010, SIAM J. Sci. Comput..
[46] Brummelen van Eh,et al. Flux evaluation in primal and dual boundary-coupled problems , 2011 .
[47] O. Lakkis,et al. Gradient recovery in adaptive finite-element methods for parabolic problems , 2009, 0905.2764.
[48] J. Oden,et al. Goal-oriented error estimation and adaptivity for the finite element method , 2001 .
[49] Endre Süli,et al. hp-Adaptive Discontinuous Galerkin Finite Element Methods for First-Order Hyperbolic Problems , 2001, SIAM J. Sci. Comput..
[50] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[51] Robert Shorten,et al. Data Assimilation for Linear Parabolic Equations: Minimax Projection Method , 2015, SIAM J. Sci. Comput..
[52] Rolf Rannacher,et al. A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity , 1999 .
[53] Li Wang,et al. Adjoint-based h-p adaptive discontinuous Galerkin methods for the 2D compressible Euler equations , 2009, J. Comput. Phys..
[54] R. Rannacher,et al. A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .
[55] J. Tinsley Oden,et al. Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .
[56] Trond Kvamsdal,et al. Goal oriented error estimators for Stokes equations based on variationally consistent postprocessing , 2003 .
[57] Sergiy M. Zhuk,et al. Minimax state estimation for linear discrete-time differential-algebraic equations , 2010, Autom..
[58] Sergiy Zhuk,et al. Kalman Duality Principle for a Class of Ill-Posed Minimax Control Problems with Linear Differential-Algebraic Constraints , 2013 .
[59] Serge Prudhomme,et al. On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .
[60] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .