Worst-case multi-objective error estimation and adaptivity

This paper introduces a new computational methodology for determining a-posteriori multi-objective error estimates for finite-element approximations, and for constructing corresponding (quasi-)optimal adaptive refinements of finite-element spaces. As opposed to the classical goal-oriented approaches, which consider only a single objective functional, the presented methodology applies to general closed convex subsets of the dual space and constructs a worst-case error estimate of the finite-element approximation error. This worst-case multi-objective error estimate conforms to a dual-weighted residual, in which the dual solution is associated with an approximate supporting functional of the objective set at the approximation error. We regard both standard approximation errors and data-incompatibility errors associated with incompatibility of boundary data with the trace of the finite-element space. Numerical experiments are presented to demonstrate the efficacy of applying the proposed worst-case multi-objective error estimate in adaptive refinement procedures.

[1]  J. Tinsley Oden,et al.  Adaptive multiscale modeling of polymeric materials with Arlequin coupling and Goals algorithms , 2009 .

[2]  Mario S. Mommer,et al.  A Goal-Oriented Adaptive Finite Element Method with Convergence Rates , 2009, SIAM J. Numer. Anal..

[3]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[4]  I. Akkerman,et al.  Goal-oriented error estimation and adaptivity for fluid–structure interaction using exact linearized adjoints , 2011 .

[5]  René de Borst,et al.  Goal-Oriented Error Estimation and Adaptivity for Free-Boundary Problems: The Domain-Map Linearization Approach , 2010, SIAM J. Sci. Comput..

[6]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[7]  T. Wick Error analysis and partition-of-unity based dual-weighted residual mesh adaptivity for phase-field fracture problems , 2015 .

[8]  Claes Johnson,et al.  Adaptive finite element methods in computational mechanics , 1992 .

[9]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[10]  Ricardo H. Nochetto,et al.  Multiscale and Adaptivity: Modeling, Numerics and Applications , 2012 .

[11]  Rolf Rannacher,et al.  Adaptive Finite Element Discretization of Flow Problems for Goal-Oriented Model Reduction , 2009 .

[12]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[13]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[14]  Claes Johnson,et al.  Adaptive finite element methods for diffusion and convection problems , 1990 .

[15]  E. Stein,et al.  Finite Element Methods for Elasticity with Error‐controlled Discretization and Model Adaptivity , 2007 .

[16]  Sergiy Zhuk State estimation for a dynamical system described by a linear equation with unknown parameters , 2009 .

[17]  Cv Clemens Verhoosel,et al.  Goal-adaptive Isogeometric Analysis with hierarchical splines , 2014 .

[18]  V. Brummelen,et al.  Goal‐oriented adaptive methods for a Boltzmann‐type equation , 2011 .

[19]  Patrick Ciarlet,et al.  Analysis of the Scott–Zhang interpolation in the fractional order Sobolev spaces , 2013, J. Num. Math..

[20]  Thomas Richter,et al.  Goal-oriented error estimation for fluid–structure interaction problems , 2012 .

[21]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[22]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[23]  Mats G. Larson,et al.  Adaptive finite element approximation of multiphysics problems: A fluid–structure interaction model problem , 2010 .

[24]  J. Tinsley Oden,et al.  Computable Error Estimators and Adaptive Techniques for Fluid Flow Problems , 2003 .

[25]  Thomas Wick,et al.  Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity , 2016 .

[26]  F. Suttmeier General approach for a posteriori error estimates for finite element solutions of variational inequalities , 2001 .

[27]  Sergiy Zhuk,et al.  A macroscopic traffic data assimilation framework based on Fourier-Galerkin method and minimax estimation , 2013, 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013).

[28]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[29]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[30]  Ralf Hartmann,et al.  Multitarget Error Estimation and Adaptivity in Aerodynamic Flow Simulations , 2008, SIAM J. Sci. Comput..

[31]  S. McKenna,et al.  Shock Capturing Data Assimilation Algorithm for 1D Shallow Water Equations , 2016 .

[32]  Mats G. Larson,et al.  Adaptive finite element approximation of multiphysics problems , 2007 .

[33]  Thomas Richter,et al.  Variational localizations of the dual weighted residual estimator , 2015, J. Comput. Appl. Math..

[34]  Isabelle Herlin,et al.  Divergence-Free Motion Estimation , 2012, ECCV.

[35]  P. Bauman,et al.  Goal-oriented model adaptivity for viscous incompressible flows , 2015 .

[36]  Sergiy M.Zhuk Minimax state estimation for linear discrete-time differential-algebraic equations , 2008, 0807.2769.

[37]  Michael Feischl,et al.  An Abstract Analysis of Optimal Goal-Oriented Adaptivity , 2015, SIAM J. Numer. Anal..

[38]  J. Tinsley Oden,et al.  Goal‐oriented error estimation for Cahn–Hilliard models of binary phase transition , 2011 .

[39]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[40]  Michael J. Holst,et al.  Generalized Green's Functions and the Effective Domain of Influence , 2005, SIAM J. Sci. Comput..

[41]  E. Harald van Brummelen,et al.  On the adjoint-consistent formulation of interface conditions in goal-oriented error estimation and adaptivity for fluid-structure interaction , 2010 .

[42]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[43]  Ralf Hartmann,et al.  Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..

[44]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[45]  René de Borst,et al.  Goal-Oriented Error Estimation and Adaptivity for Free-Boundary Problems: The Shape-Linearization Approach , 2010, SIAM J. Sci. Comput..

[46]  Brummelen van Eh,et al.  Flux evaluation in primal and dual boundary-coupled problems , 2011 .

[47]  O. Lakkis,et al.  Gradient recovery in adaptive finite-element methods for parabolic problems , 2009, 0905.2764.

[48]  J. Oden,et al.  Goal-oriented error estimation and adaptivity for the finite element method , 2001 .

[49]  Endre Süli,et al.  hp-Adaptive Discontinuous Galerkin Finite Element Methods for First-Order Hyperbolic Problems , 2001, SIAM J. Sci. Comput..

[50]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[51]  Robert Shorten,et al.  Data Assimilation for Linear Parabolic Equations: Minimax Projection Method , 2015, SIAM J. Sci. Comput..

[52]  Rolf Rannacher,et al.  A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity , 1999 .

[53]  Li Wang,et al.  Adjoint-based h-p adaptive discontinuous Galerkin methods for the 2D compressible Euler equations , 2009, J. Comput. Phys..

[54]  R. Rannacher,et al.  A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .

[55]  J. Tinsley Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .

[56]  Trond Kvamsdal,et al.  Goal oriented error estimators for Stokes equations based on variationally consistent postprocessing , 2003 .

[57]  Sergiy M. Zhuk,et al.  Minimax state estimation for linear discrete-time differential-algebraic equations , 2010, Autom..

[58]  Sergiy Zhuk,et al.  Kalman Duality Principle for a Class of Ill-Posed Minimax Control Problems with Linear Differential-Algebraic Constraints , 2013 .

[59]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[60]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .