On regularity and stability in semi-infinite optimization

For stationary solutions and Langrange multipliers of a semi-infinite program withC1 data, we study some stability behaviour which is closely related to (metric) regularity of the constraint system. The multiplier set mapping considered here has its images in a finite-dimensional space. In this framework, regularity is a necessary and sufficient condition to have bounded sets of multipliers.

[1]  S. M. Robinson Stability Theory for Systems of Inequalities, Part II: Differentiable Nonlinear Systems , 1976 .

[2]  D. Klatte,et al.  Metric regularity of the feasible set mapping in semi-infinite optimization , 1994 .

[3]  Lionel Thibault,et al.  Approximate subdifferential and metric regularity: The finite-dimensional case , 1990, Math. Program..

[4]  B. Bank,et al.  Non-Linear Parametric Optimization , 1983 .

[5]  R. Cominetti Metric regularity, tangent sets, and second-order optimality conditions , 1990 .

[6]  René Henrion,et al.  On constraint qualifications , 1992 .

[7]  J. Penot On regularity conditions in mathematical programming , 1982 .

[8]  J. M. Borwein,et al.  Direct theorems in semi-infinite convex programming , 1981, Math. Program..

[9]  Rainer Hettich,et al.  Numerische Methoden der Approximation und semi-infiniten Optimierung , 1982 .

[10]  Hubertus Th. Jongen,et al.  Semi-infinite optimization: Structure and stability of the feasible set , 1990 .

[11]  Jean-Paul Penot,et al.  Differentiability of Relations and Differential Stability of Perturbed Optimization Problems , 1984 .

[12]  J. Borwein Stability and regular points of inequality systems , 1986 .

[13]  A. Ioffe Regular points of Lipschitz functions , 1979 .

[14]  R. P. Hettich,et al.  Semi-infinite programming: Conditions of optimality and applications , 1978 .

[15]  Olvi L. Mangasarian,et al.  A Stable Theorem of the Alternative: An Extension of the Gordan Theorem. , 1981 .

[16]  Diethard Klatte,et al.  On Procedures for Analysing Parametric Optimization Problems , 1982 .

[17]  Jacques Gauvin,et al.  A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming , 1977, Math. Program..

[18]  Alexander Shapiro,et al.  On Lipschitzian Stability of Optimal Solutions of Parametrized Semi-Infinite Programs , 1994, Math. Oper. Res..

[19]  J. Stoer,et al.  Convexity and Optimization in Finite Dimensions I , 1970 .

[20]  Diethard Klatte Stable local minimizers in semi-infinite optimization: regularity and second-order conditions , 1994 .

[21]  S. M. Robinson Generalized equations and their solutions, part II: Applications to nonlinear programming , 1982 .

[22]  E. Cheney Introduction to approximation theory , 1966 .

[23]  V. Klee The Critical Set of a Convex Body , 1953 .

[24]  J. Zowe,et al.  Regularity and stability for the mathematical programming problem in Banach spaces , 1979 .