Optical source model for the 23.2–23.6 nm radiation from the multielement germanium soft X-ray laser

[1]  E. Wolf,et al.  Principles of Optics , 2019 .

[2]  M. T. Browne,et al.  Dependence of spatial coherence of 23.2-23.6-nm radiation on the geometry of a multielement germanium x-ray laser target , 1998 .

[3]  M. T. Browne,et al.  Time dependence of the spatial coherence of the 23.6- and 23.2-nm radiation from the germanium soft-x-ray laser , 1998 .

[4]  M. T. Browne,et al.  Spatial coherence of x-ray laser emission from neonlike germanium after prepulse , 1997 .

[5]  R. London,et al.  Simultaneous Measurement of Local Gain and Electron Density in X-ray Lasers , 1996, Science.

[6]  P. Lu,et al.  Two-dimensional near-field images of the neonlike germanium soft-x-ray laser. , 1996, Optics Letters.

[7]  J. Nilsen,et al.  Temporally and spatially resolved investigation of the J = 0–1 and J = 2–1, 3p–3s laser emissions in neonlike germanium , 1996 .

[8]  J. Rocca,et al.  Soft X-Ray Lasers and Applications II , 1995 .

[9]  J. A. Plowes,et al.  A computational investigation of the neon-like germanium collisionally pumped laser , 1994 .

[10]  O'Neill,et al.  Saturated and near-diffraction-limited operation of an XUV laser at 23.6 nm. , 1992, Physical review letters.

[11]  Yoshiaki Kato,et al.  Development of soft x-ray lasers at the Institute of Laser Engineering: recent results on Ge soft x-ray laser (Invited Paper) , 1992, Optics & Photonics.

[12]  Carter,et al.  Measurement of the spatial coherence of a soft-x-ray laser. , 1992, Physical review letters.

[13]  C. H. Dittmore,et al.  Low-energy x-ray response of photographic films. II. Experimental characterization , 1984 .