DISCOVERY OF A QUADRUPLE LENS IN CANDELS WITH A RECORD LENS REDSHIFT z = 1.53

Using spectroscopy from the Large Binocular Telescope and imaging from the Hubble Space Telescope we discovered the first strong galaxy lens at zlens > 1. The lens has a secure photometric redshift of z = 1.53  ±  0.09 and the source is spectroscopically confirmed at z = 3.417. The Einstein radius (0.″35; 3.0 kpc) encloses 7.6 × 1010 M☉, with an upper limit on the dark matter fraction of 60%. The highly magnified (40×) source galaxy has a very small stellar mass (∼108 M☉) and shows an extremely strong [O iii]5007 Å emission line (EW0 ∼ 1000 Å) bolstering the evidence that intense starbursts among very low-mass galaxies are common at high redshift.

[1]  M. Donahue,et al.  EVIDENCE FOR UBIQUITOUS HIGH-EQUIVALENT-WIDTH NEBULAR EMISSION IN z ∼ 7 GALAXIES: TOWARD A CLEAN MEASUREMENT OF THE SPECIFIC STAR-FORMATION RATE USING A SAMPLE OF BRIGHT, MAGNIFIED GALAXIES , 2013, 1307.5847.

[2]  H. Rix,et al.  STRUCTURAL EVOLUTION OF EARLY-TYPE GALAXIES TO z = 2.5 IN CANDELS , 2013, 1305.6931.

[3]  S. White,et al.  Galactic star formation and accretion histories from matching galaxies to dark matter haloes , 2012, 1205.5807.

[4]  Chien Y. Peng,et al.  STRUCTURAL PARAMETERS OF GALAXIES IN CANDELS , 2012, 1211.6954.

[5]  H. Rix,et al.  STELLAR KINEMATICS OF z ∼ 2 GALAXIES AND THE INSIDE-OUT GROWTH OF QUIESCENT GALAXIES, , 2012, 1211.3424.

[6]  H. Rix,et al.  3D-HST GRISM SPECTROSCOPY OF A GRAVITATIONALLY LENSED, LOW-METALLICITY STARBURST GALAXY AT z = 1.847 , 2012, 1207.3795.

[7]  Garth D. Illingworth,et al.  3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE , 2012, 1204.2829.

[8]  C. Conselice,et al.  CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM z = 8 TO 4 , 2011, 1110.3785.

[9]  R. Ellis,et al.  CAN MINOR MERGING ACCOUNT FOR THE SIZE GROWTH OF QUIESCENT GALAXIES? NEW RESULTS FROM THE CANDELS SURVEY , 2011, 1110.1637.

[10]  J. Kneib,et al.  The CFHTLS-Strong Lensing Legacy Survey (SL2S): Investigating the group-scale lenses with the SARCS sample , 2011, 1109.1821.

[11]  P. McCarthy,et al.  VERY STRONG EMISSION-LINE GALAXIES IN THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY AND IMPLICATIONS FOR HIGH-REDSHIFT GALAXIES, , 2011, 1109.0639.

[12]  J. Trump,et al.  EXTREME EMISSION-LINE GALAXIES IN CANDELS: BROADBAND-SELECTED, STARBURSTING DWARF GALAXIES AT z > 1 , 2011, 1107.5256.

[13]  B. Lundgren,et al.  THE NEWFIRM MEDIUM-BAND SURVEY: PHOTOMETRIC CATALOGS, REDSHIFTS, AND THE BIMODAL COLOR DISTRIBUTION OF GALAXIES OUT TO z ∼ 3 , 2011, 1105.4609.

[14]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[15]  Kyoung-Soo Lee,et al.  THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ⩽ z ⩽ 2.2 , 2011, 1104.2595.

[16]  H. Rix,et al.  THE MAJORITY OF COMPACT MASSIVE GALAXIES AT z ∼ 2 ARE DISK DOMINATED , 2011, 1101.2423.

[17]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[18]  D. Thompson,et al.  GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < z < 2 FROM THE S-COSMOS SURVEY , 2009, 0903.0102.

[19]  P. T. de Zeeuw,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE EINSTEIN CROSS: CONSTRAINT ON DARK MATTER FROM STELLAR DYNAMICS AND GRAVITATIONAL LENSING , 2022 .

[20]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[21]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[22]  Y. Mellier,et al.  First Catalog of Strong Lens Candidates in the COSMOS Field , 2008, 0802.2174.

[23]  R. Bouwens,et al.  UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.

[24]  UCLA,et al.  The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies , 2005, astro-ph/0511453.

[25]  T. Treu,et al.  Massive Dark Matter Halos and Evolution of Early-Type Galaxies to z ≈ 1 , 2004, astro-ph/0401373.

[26]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[27]  Walter Seifert,et al.  LUCIFER: a Multi-Mode NIR Instrument for the LBT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[28]  Mark Clampin,et al.  Overview of the Advanced Camera for Surveys on-orbit performance , 2003, SPIE Astronomical Telescopes + Instrumentation.

[29]  P. Dokkum,et al.  The Fundamental Plane and the evolution of the M/L ratio of early-type field galaxies up to z ∼ 1 , 2002, astro-ph/0211566.

[30]  J. Lehár,et al.  The Evolution of a Mass-selected Sample of Early-Type Field Galaxies , 2002, astro-ph/0211229.

[31]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[32]  C. Kochanek Evidence for Dark Matter in MG 1654+134 , 1995 .

[33]  Marc F Schmidt,et al.  The third image, the redshift of the lens, and new components of the gravitational lens 2016 + 112 , 1986 .

[34]  C. Bennett,et al.  Discovery of a New Gravitational Lens System , 1984, Science.

[35]  S. Refsdal On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .