Variational Bayesian Blind Deconvolution Using a Total Variation Prior

In this paper, we present novel algorithms for total variation (TV) based blind deconvolution and parameter estimation utilizing a variational framework. Using a hierarchical Bayesian model, the unknown image, blur, and hyperparameters for the image, blur, and noise priors are estimated simultaneously. A variational inference approach is utilized so that approximations of the posterior distributions of the unknowns are obtained, thus providing a measure of the uncertainty of the estimates. Experimental results demonstrate that the proposed approaches provide higher restoration performance than non-TV-based methods without any assumptions about the unknown hyperparameters.

[1]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[2]  Luís B. Almeida,et al.  Blind deblurring of natural images , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[3]  Aggelos K. Katsaggelos,et al.  Parameter Estimation in TV Image Restoration Using Variational Distribution Approximation , 2008, IEEE Transactions on Image Processing.

[4]  K. Adami Variational Methods in Bayesian Deconvolution , 2003 .

[5]  José M. Bioucas-Dias,et al.  Adaptive total variation image deconvolution: A majorization-minimization approach , 2006, 2006 14th European Signal Processing Conference.

[6]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[7]  Aggelos K. Katsaggelos,et al.  Blind Deconvolution Using a Variational Approach to Parameter, Image, and Blur Estimation , 2006, IEEE Transactions on Image Processing.

[8]  B. Ripley,et al.  Using spatial models as priors in astronomical image analysis , 1989 .

[9]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[10]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[11]  Alexander Ilin,et al.  On the Effect of the Form of the Posterior Approximation in Variational Learning of ICA Models , 2005, Neural Processing Letters.

[12]  David J. C. MacKay,et al.  Ensemble Learning for Blind Image Separation and Deconvolution , 2000 .

[13]  Aggelos K. Katsaggelos,et al.  Spatially adaptive iterative algorithm for the restoration of astronomical images , 1995, Int. J. Imaging Syst. Technol..

[14]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[15]  Tony F. Chan,et al.  Total variation blind deconvolution , 1998, IEEE Trans. Image Process..

[16]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[17]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[18]  Yehoshua Y. Zeevi,et al.  Quasi Maximum Likelihood Blind Deconvolution of Images Using Optimal Sparse Representations , 2003 .

[19]  Sundaresh Ram,et al.  Removing Camera Shake from a Single Photograph , 2009 .

[20]  A. Moffat A Theoretical Investigation of Focal Stellar Images in the Photographic Emulsion and Application to Photographic Photometry , 1969 .

[21]  Rafael Molina,et al.  Blind Image Deconvolution: Problem formulation and existing approaches , 2007 .

[22]  Yen-Wei Chen,et al.  Ensemble learning for independent component analysis , 2006, Pattern Recognit..

[23]  A.K. Katsaggelos,et al.  A general framework for frequency domain multi-channel signal processing , 1993, IEEE Trans. Image Process..

[24]  Harri Lappalainen,et al.  Ensemble learning for independent component analysis , 1999 .

[25]  Yin Zhang,et al.  A Fast Algorithm for Image Deblurring with Total Variation Regularization , 2007 .

[26]  Aggelos K. Katsaggelos,et al.  Total Variation Image Restoration and Parameter Estimation using Variational Posterior Distribution Approximation , 2007, 2007 IEEE International Conference on Image Processing.

[27]  Evgueni A. Haroutunian,et al.  Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.

[28]  Aggelos K. Katsaggelos,et al.  Noise robust spatial gradient estimation for use in displacement estimation , 1995, Proceedings., International Conference on Image Processing.

[29]  Arun N. Netravali,et al.  Image Restoration Based on a Subjective Criterion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[30]  Curtis R. Vogel,et al.  Ieee Transactions on Image Processing Fast, Robust Total Variation{based Reconstruction of Noisy, Blurred Images , 2022 .

[31]  Nikolas P. Galatsanos,et al.  A variational approach for Bayesian blind image deconvolution , 2004, IEEE Transactions on Signal Processing.

[32]  Raymond H. Chan,et al.  Cosine transform based preconditioners for total variation deblurring , 1999, IEEE Trans. Image Process..

[33]  James H. Money,et al.  Total variation minimizing blind deconvolution with shock filter reference , 2008, Image Vis. Comput..

[34]  Wenyi Zhao,et al.  Image Restoration Under Significant Additive Noise , 2007, IEEE Signal Processing Letters.

[35]  Mostafa Kaveh,et al.  A regularization approach to joint blur identification and image restoration , 1996, IEEE Trans. Image Process..

[36]  Mostafa Kaveh,et al.  Blind image restoration by anisotropic regularization , 1999, IEEE Trans. Image Process..

[37]  Nahum Kiryati,et al.  Variational Pairing of Image Segmentation and Blind Restoration , 2004, ECCV.