Cubic Graphs and Related Triangulations on Orientable Surfaces

Let $\mathbb{S}_g$ be the orientable surface of genus $g$. We show that the number of vertex-labelled cubic multigraphs embeddable on $\mathbb{S}_g$ with $2n$ vertices is asymptotically $c_g n^{5(g-1)/2-1}\gamma^{2n}(2n)!$, where $\gamma$ is an algebraic constant and $c_g$ is a constant depending only on the genus $g$. We also derive an analogous result for simple cubic graphs and weighted cubic multigraphs. Additionally we prove that a typical cubic multigraph embeddable on $\mathbb{S}_g$, $g\ge 1$, has exactly one non-planar component.

[1]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[2]  Zhicheng Gao,et al.  A Pattern for the Asymptotic Number of Rooted Maps on Surfaces , 1993, J. Comb. Theory, Ser. A.

[3]  Svante Janson,et al.  The Birth of the Giant Component , 1993, Random Struct. Algorithms.

[4]  Edward A. Bender,et al.  The Number of Labeled 2-Connected Planar Graphs , 2002, Electron. J. Comb..

[5]  Edward A. Bender,et al.  Asymptotic Enumeration of Labelled Graphs by Genus , 2011, Electron. J. Comb..

[6]  Zhi-Cheng Gao The number of rooted triangular maps on a surface , 1991, J. Comb. Theory, Ser. B.

[7]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[8]  Colin McDiarmid,et al.  Random cubic planar graphs , 2007, Random Struct. Algorithms.

[9]  Omer Giménez,et al.  Asymptotic enumeration and limit laws of planar graphs , 2005, math/0501269.

[10]  Marc Noy,et al.  Asymptotic enumeration and limit laws for graphs of fixed genus , 2010, J. Comb. Theory, Ser. A.

[11]  Marc Noy,et al.  Random cubic planar graphs revisited , 2016, Electron. Notes Discret. Math..

[12]  Edward A. Bender,et al.  The Asymptotic Number of Rooted Maps on a Surface. II. Enumeration by Vertices and Faces , 1993, J. Comb. Theory, Ser. A.

[13]  M. Noy,et al.  On the probability of planarity of a random graph near the critical point , 2012, 1204.3376.

[14]  W. Burnside Theory of Functions , 1899, Nature.

[15]  Tomasz Luczak,et al.  Two critical periods in the evolution of random planar graphs , 2010, 1006.0444.

[16]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[17]  N. Wormald,et al.  Enumeration of Rooted Cubic Planar Maps , 2002 .

[18]  Edward A. Bender,et al.  Almost all rooted maps have large representativity , 1994 .

[19]  Zhi-Cheng Gao,et al.  The number of rooted 2-connected triangular maps on the projective plane , 1991, J. Comb. Theory, Ser. B.

[20]  Deryk Osthus,et al.  On random planar graphs, the number of planar graphs and their triangulations , 2003, J. Comb. Theory, Ser. B.

[21]  Zhicheng Gao,et al.  The asymptotic number of rooted 2-connected triangular maps on a surface , 1992, J. Comb. Theory, Ser. B.

[22]  Manuel Bodirsky,et al.  Generating unlabeled connected cubic planar graphs uniformly at random , 2008 .

[23]  Edward A. Bender,et al.  The asymptotic number of rooted maps on a surface , 1986, J. Comb. Theory, Ser. A.

[24]  Manuel Bodirsky,et al.  Generating unlabeled connected cubic planar graphs uniformly at random , 2008, Random Struct. Algorithms.

[25]  I. Goulden,et al.  Combinatorial Enumeration , 2004 .

[26]  W. G. Brown Enumeration of Triangulations of the Disk , 1964 .

[27]  Edward A. Bender,et al.  The asymptotic number of rooted nonseparable maps on a surface , 1988, J. Comb. Theory, Ser. A.

[28]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[29]  H. Whitney Congruent Graphs and the Connectivity of Graphs , 1932 .

[30]  Mihyun Kang,et al.  Characterisation of symmetries of unlabelled triangulations and its applications , 2015, 1509.00581.

[31]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[32]  Colin McDiarmid,et al.  Random planar graphs , 2005, J. Comb. Theory B.

[33]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..