Temperature of systems out of thermodynamic equilibrium.

Two phenomenological approaches are currently used in the study of the vitreous state. One is based on the concept of fictive temperature introduced by Tool [J. Res. Natl. Bur. Stand. 34, 199 (1945)] and recently revisited by Nieuwenhuizen [Phys. Rev. Lett. 80, 5580 (1998)]. The other is based on the thermodynamics of irreversible processes initiated by De Donder at the beginning of the last century [L'Affinite (Gauthier-Villars, Paris, 1927)] and recently used by Moller et al. for a thorough study of the glass transition [J. Chem. Phys. 125, 094505 (2006)]. This latter approach leads to the possibility of describing the glass transition by means of the freezing-in of one or more order parameters connected to the internal structural degrees of freedom involved in the vitrification process. In this paper, the equivalence of the two preceding approaches is demonstrated, not only for glasses but in a very general way for any system undergoing an irreversible transformation. This equivalence allows the definition of an effective temperature for all systems departed from equilibrium generating a positive amount of entropy. In fact, the initial fictive temperature concept of Tool leads to the generalization of the notion of temperature for systems out of thermodynamic equilibrium, for which glasses are just particular cases.

[1]  J. Richard,et al.  Entropy production in ac-calorimetry , 2007, 0706.4216.

[2]  J. Garden Simple derivation of the frequency dependent complex heat capacity , 2007, 0706.4047.

[3]  J. Mauro,et al.  Continuously broken ergodicity. , 2007, The Journal of chemical physics.

[4]  J. Langer The mysterious glass transition , 2007 .

[5]  J. Garden Macroscopic non-equilibrium thermodynamics in dynamic calorimetry , 2007, 0706.4143.

[6]  N. Nakagawa Conformational temperature characterizing the folding of a protein. , 2006, Physical review letters.

[7]  J. Schmelzer,et al.  The Prigogine-Defay ratio revisited. , 2006, The Journal of chemical physics.

[8]  Jeppe C. Dyre,et al.  Colloquium : The glass transition and elastic models of glass-forming liquids , 2006 .

[9]  J. Schmelzer,et al.  Freezing-in and production of entropy in vitrification. , 2006, The Journal of chemical physics.

[10]  J. Pekola,et al.  Single-mode heat conduction by photons , 2006, Nature.

[11]  J. Vilar,et al.  The mesoscopic dynamics of thermodynamic systems. , 2005, The journal of physical chemistry. B.

[12]  S. Skipetrov,et al.  Attojoule calorimetry of mesoscopic superconducting loops. , 2004, Physical review letters.

[13]  Jean-Luc Garden,et al.  Highly sensitive ac nanocalorimeter for microliter-scale liquids or biological samples , 2004 .

[14]  Y. Yue,et al.  Fictive temperature, cooling rate, and viscosity of glasses. , 2004, The Journal of chemical physics.

[15]  D. Jou,et al.  Temperature in non-equilibrium states: a review of open problems and current proposals , 2003 .

[16]  C. Angell,et al.  Calorimetric studies of the energy landscapes of glassformers by hyperquenching methods , 2002 .

[17]  Y. Yue,et al.  Determination of the fictive temperature for a hyperquenched glass , 2002 .

[18]  G. McKenna,et al.  The glass transition: its measurement and underlying physics , 2002 .

[19]  C. Schick,et al.  Application of an extended Tool–Narayanaswamy–Moynihan model: Part 1. Description of vitrification and complex heat capacity measured by temperature-modulated DSC , 2001 .

[20]  J. Vilar,et al.  Thermodynamics “beyond” local equilibrium , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Paul F. McMillan,et al.  Relaxation in glassforming liquids and amorphous solids , 2000 .

[22]  T. Nieuwenhuizen Thermodynamic picture of the glassy state , 2000, cond-mat/0005402.

[23]  Nieuwenhuizen Thermodynamic picture of the glassy state gained from exactly solvable models , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  J. Rubí,et al.  Inertial effects in non-equilibrium thermodynamics , 1998, cond-mat/9807284.

[25]  B. Wunderlich,et al.  About Complex Heat Capacities and Temperature-Modulated Calorimetry , 1998 .

[26]  T. Nieuwenhuizen Thermodynamics of the Glassy State: Effective Temperature as an Additional System Parameter , 1998, cond-mat/9805069.

[27]  P. K. Gallagher,et al.  Handbook of thermal analysis and calorimetry , 1998 .

[28]  Y. H. Jeong,et al.  Progress in experimental techniques for dynamic calorimetry , 1997 .

[29]  K. Ema,et al.  Some aspects of recent improvements of temperature-modulated calorimeter , 1997 .

[30]  T. Nieuwenhuizen Ehrenfest relations at the glass transition: solution to an old paradox , 1997, cond-mat/9707260.

[31]  L. Peliti,et al.  ENERGY FLOW, PARTIAL EQUILIBRATION, AND EFFECTIVE TEMPERATURES IN SYSTEMS WITH SLOW DYNAMICS , 1996, cond-mat/9611044.

[32]  Gregory B. McKenna,et al.  Glass Formation and Glassy Behavior , 1996 .

[33]  I. Prigogine Introduction à la thermodynamique des processus irréversibles , 1996 .

[34]  H. Baur Thermodynamics of relaxation processes in the glass transition region II , 1989 .

[35]  S. Nagel,et al.  Wide‐frequency specific heat spectrometer , 1987 .

[36]  N. Birge,et al.  Specific-heat spectroscopy of glycerol and propylene glycol near the glass transition. , 1986, Physical review. B, Condensed matter.

[37]  J. Jäckle,et al.  Models of the glass transition , 1986 .

[38]  Freeman,et al.  Hot electrons and energy transport in metals at millikelvin temperatures. , 1985, Physical review letters.

[39]  Nagel,et al.  Specific-heat spectroscopy of the glass transition. , 1985, Physical review letters.

[40]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[41]  R. Davies,et al.  Thermodynamic and kinetic properties of glasses , 1953 .

[42]  I. Prigogine,et al.  Sur l'extension de la thermodynamique aux phénomènes irréversibles liés aux degrés de liberté internes , 1953 .

[43]  A. Q. Tool,et al.  RELATION BETWEEN INELASTIC DEFORMABILITY AND THERMAL EXPANSION OF GLASS IN ITS ANNEALING RANGE , 1946 .

[44]  A. Q. Tool Relaxation of stresses in annealing glass , 1945 .

[45]  J. D. Bernal An attempt at a molecular theory of liquid structure , 1937 .