Likelihood-free Markov chain Monte Carlo

To appear to MCMC handbook, S. P. Brooks, A. Gelman, G. Jones and X.-L. Meng (eds), Chapman & Hall.

[1]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[2]  P. Donnelly,et al.  Inferring coalescence times from DNA sequence data. , 1997, Genetics.

[3]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[4]  L Tierney,et al.  Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.

[5]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[6]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[8]  Wenxin Jiang,et al.  The Indirect Method: Inference Based on Intermediate Statistics—A Synthesis and Examples , 2004 .

[9]  Nicolas Ray,et al.  Bayesian Estimation of Recent Migration Rates After a Spatial Expansion , 2005, Genetics.

[10]  Statistical solutions to modern problems : proceedings of the 20th International Workshop on Statistical Modelling, Sydney, Australia, July 10-15, 2005 , 2005 .

[11]  Andrew R. Francis,et al.  Using Approximate Bayesian Computation to Estimate Tuberculosis Transmission Parameters From Genotype Data , 2006, Genetics.

[12]  Gareth W. Peters,et al.  Bayesian Inference, Monte Carlo Sampling and Operational Risk. , 2006 .

[13]  S. Tavaré,et al.  Modern computational approaches for analysing molecular genetic variation data , 2006, Nature Reviews Genetics.

[14]  Carsten Wiuf,et al.  Using Likelihood-Free Inference to Compare Evolutionary Dynamics of the Protein Networks of H. pylori and P. falciparum , 2007, PLoS Comput. Biol..

[15]  S. Coles,et al.  Inference for Stereological Extremes , 2007 .

[16]  L. Excoffier,et al.  Statistical evaluation of alternative models of human evolution , 2007, Proceedings of the National Academy of Sciences.

[17]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[18]  C. Robert,et al.  ABC likelihood-free methods for model choice in Gibbs random fields , 2008, 0807.2767.

[19]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[20]  Paul Marjoram,et al.  Statistical Applications in Genetics and Molecular Biology Approximately Sufficient Statistics and Bayesian Computation , 2011 .

[21]  M. Blum Approximate Bayesian Computation: A Nonparametric Perspective , 2009, 0904.0635.

[22]  Richard D Wilkinson,et al.  Estimating primate divergence times by using conditioned birth-and-death processes. , 2009, Theoretical population biology.

[23]  Andrew R. Francis,et al.  The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis , 2009, Proceedings of the National Academy of Sciences.

[24]  C. Robert,et al.  Adaptive approximate Bayesian computation , 2008, 0805.2256.

[25]  Franck Jabot,et al.  Inferring the parameters of the neutral theory of biodiversity using phylogenetic information and implications for tropical forests. , 2009, Ecology letters.

[26]  L. Excoffier,et al.  Efficient Approximate Bayesian Computation Coupled With Markov Chain Monte Carlo Without Likelihood , 2009, Genetics.

[27]  Christophe Andrieu,et al.  Model criticism based on likelihood-free inference, with an application to protein network evolution , 2009, Proceedings of the National Academy of Sciences.

[28]  Alex R Cook,et al.  The International Journal of Biostatistics Inference in Epidemic Models without Likelihoods , 2011 .

[29]  S. A. Sisson,et al.  Likelihood-free Bayesian inference for alpha-stable models , 2009 .

[30]  Viet Chi Tran,et al.  HIV with contact tracing: a case study in approximate Bayesian computation. , 2008, Biostatistics.

[31]  Olivier François,et al.  Non-linear regression models for Approximate Bayesian Computation , 2008, Stat. Comput..

[32]  Gareth W. Peters,et al.  On sequential Monte Carlo, partial rejection control and approximate Bayesian computation , 2008, Statistics and Computing.