Quantifying Dry Milling in Pharmaceutical Processing: A Review on Experimental and Modeling Approaches.

Particle size reduction by mechanical means is an important unit operation in the pharmaceutical industry, used to improve flow, solubility, and in amorphization of drugs. It is usually achieved by the fracturing of particles under the action of applied energy. Despite being pervasive in the pharmaceutical field, it is one of the least understood processes owing to the complexity of material and process variables involved during milling. To comprehend the process, efforts should be focused on techniques that measure the particle size as well as the control the process. With the ongoing initiative of US FDA to encourage design in quality, the review is focused on some process analytical tools to characterize particle size distribution as well as process modeling tools to simulate particle size reduction. Additionally, an overview of some fundamental aspects related to milling is provided. To this end, the review is limited, mainly concentrating on some of experimental and modeling approaches used to quantify and understand the physics behind the process of dry milling.

[1]  A. Noyes,et al.  The rate of solution of solid substances in their own solutions , 1897 .

[2]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[3]  T. G. Callcott,et al.  A matrix analysis of processes involving particle assemblies , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  L. G. Austin,et al.  THE THEORY OF GRINDING OPERATIONS , 1964 .

[5]  Leonard G. Austin,et al.  Introduction to the mathematical description of grinding as a rate process , 1971 .

[6]  H. Rumpf,et al.  Physical aspects of comminution and new formulation of a law of comminution , 1973 .

[7]  Leonard G. Austin,et al.  A commentary on the Kick, Bond and Rittinger laws of grinding , 1973 .

[8]  E. L. Parrott,et al.  Milling of pharmaceutical solids. , 1974, Journal of pharmaceutical sciences.

[9]  T. R. Wilshaw,et al.  Quasi-static solid particle damage in brittle solids—I. Observations analysis and implications , 1976 .

[10]  Anthony G. Evans,et al.  Dynamic solid particle damage in brittle materials: an appraisal , 1977 .

[11]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[12]  B. A. Wills,et al.  Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery , 1988 .

[13]  J. A. Hersey,et al.  An evaluation of tablet binding agents part I. Solution binders , 1983 .

[14]  R. Clift,et al.  Observations on impact attrition of granular solids , 1986 .

[15]  C. L. Prasher,et al.  Crushing and Grinding Process Handbook , 1987 .

[16]  E. Hirleman,et al.  Modeling of Multiple Scattering Effects in Fraunhofer Diffraction Particle Size Analysis , 1988 .

[17]  D. Fuerstenau,et al.  Effect of fine particles on the kinetics and energetics of grinding coarse particles , 1991 .

[18]  Zhang Hongjian,et al.  A versatile Fraunhofer diffraction and Mie scattering based laser particle sizer , 1992 .

[19]  Brahmeshwar Mishra,et al.  The discrete element method for the simulation of ball mills , 1992 .

[20]  T. Harvill,et al.  In-process particle size distribution measurements and control , 1993 .

[21]  Brahmeshwar Mishra,et al.  Simulation of charge motion in ball mills. Part 1: experimental verifications , 1994 .

[22]  Alexander V. Potapov,et al.  Computer simulation of impact-induced particle breakage , 1994 .

[23]  G. Liversidge,et al.  Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs , 1995 .

[24]  C. Thornton,et al.  Distinct element simulation of impact breakage of lactose agglomerates , 1997 .

[25]  Paul W. Cleary,et al.  Predicting charge motion, power draw, segregation and wear in ball mills using discrete element methods , 1998 .

[26]  N Midoux,et al.  Micronization of pharmaceutical substances in a spiral jet mill , 1999 .

[27]  Colin Thornton,et al.  Numerical simulations of impact breakage of a spherical crystalline agglomerate , 2000 .

[28]  Brian Scarlett,et al.  New developments in particle characterization by laser diffraction: size and shape , 2000 .

[29]  B. J. Ennis,et al.  Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review , 2001 .

[30]  Paul W. Cleary,et al.  Recent advances in dem modelling of tumbling mills , 2001 .

[31]  Paul W. Cleary,et al.  Charge behaviour and power consumption in ball mills: sensitivity to mill operating conditions, liner geometry and charge composition , 2001 .

[32]  Brian Scarlett,et al.  Population balances for particulate processes - a volume approach. , 2002 .

[33]  Parisa A. Bahri,et al.  Estimating Average Particle Size by Focused Beam Reflectance Measurement (FBRM) , 2002 .

[34]  Alan W. Mahoney,et al.  Population balance modeling. Promise for the future , 2002 .

[35]  Amlan Datta,et al.  A direct approach of modeling batch grinding in ball mills using population balance principles and impact energy distribution , 2002 .

[36]  Mojtaba Ghadiri,et al.  Impact attrition of particulate solids. Part 2: Experimental work , 2002 .

[37]  Luís Marcelo Tavares,et al.  Modeling of particle fracture by repeated impacts using continuum damage mechanics , 2002 .

[38]  Mojtaba Ghadiri,et al.  Impact attrition of particulate solids. Part 1: A theoretical model of chipping , 2002 .

[39]  Wolfgang Peukert,et al.  Characterisation of Grinding‐Relevant Particle Properties by Inverting a Population Balance Model , 2002 .

[40]  Elaine Merisko-Liversidge,et al.  Nanosizing: a formulation approach for poorly-water-soluble compounds. , 2003, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[41]  Fengnian Shi,et al.  Applying discrete element modelling to vertical and horizontal shaft impact crushers , 2003 .

[42]  Brian Scarlett,et al.  Breakage behaviour of enzyme granules in a repeated impact test , 2003 .

[43]  Wolfgang Peukert,et al.  Breakage behaviour of different materials—construction of a mastercurve for the breakage probability , 2003 .

[44]  M. Ghadiri,et al.  Effect of structural characteristics on impact breakage of agglomerates , 2003 .

[45]  Use of a jet mill to obtain powders of pharmaceutical preparations , 1972, Pharmaceutical Chemistry Journal.

[46]  F. Maio,et al.  Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes , 2004 .

[47]  Colin Thornton,et al.  How do agglomerates break , 2004 .

[48]  Jy Zhang,et al.  Application of the Discrete Approach to the Simulation of Size Segregation in Granular Chute Flow , 2004 .

[49]  K. van der Voort Maarschalk,et al.  Milling of agglomerates in an impact mill. , 2004, International journal of pharmaceutics.

[50]  Yulong Ding,et al.  Energy-based analysis of milling α-lactose monohydrate , 2004 .

[51]  Mojtaba Ghadiri,et al.  Development of a novel approach towards predicting the milling behaviour of pharmaceutical powders. , 2004, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[52]  Douglas W. Fuerstenau,et al.  Linear and nonlinear particle breakage processes in comminution systems , 2004 .

[53]  A. Naeem,et al.  Xanthate adsorption studies on chalcopyrite ore , 2004 .

[54]  P. Cundall,et al.  A bonded-particle model for rock , 2004 .

[55]  Alexander V. Potapov,et al.  Making a Discrete Grain Breakage model practical for comminution equipment performance simulation , 2004 .

[56]  Colin Thornton,et al.  Numerical simulations of diametrical compression tests on agglomerates , 2004 .

[57]  S. Heinrich,et al.  Breakage behaviour of spherical granulates by compression , 2005 .

[58]  D. Parikh Handbook of Pharmaceutical Granulation Technology , 2005 .

[59]  van der Kees Voort Maarschalk,et al.  Milling of Organic Solids in a Jet Mill. Part 2: Checking the Validity of the Predicted Rate of Breakage Function , 2005 .

[60]  Kees van der Voort Maarschalk,et al.  Milling of Organic Solids in a Jet Mill. Part 1: Determination of the Selection Function and Related Mechanical Material Properties , 2005 .

[61]  Ecevit Bilgili,et al.  Population balance modeling of non-linear effects in milling processes , 2005 .

[62]  Paul Kippax,et al.  Appraisal of the laser diffraction particle-sizing technique , 2005 .

[63]  Manoj Khanal,et al.  Impact crushing of particle–particle compounds—experiment and simulation , 2005 .

[64]  B. Shekunov,et al.  Particle Size Analysis in Pharmaceutics: Principles, Methods and Applications , 2007, Pharmaceutical Research.

[65]  Bruno C. Hancock,et al.  Process simulation in the pharmaceutical industry: a review of some basic physical models. , 2006, Journal of pharmaceutical sciences.

[66]  M. Hounslow,et al.  Predicting dynamic failure of dense granules from static compression tests , 2006 .

[67]  Jennifer S. Curtis,et al.  The Application of Computational Modeling to Pharmaceutical Materials Science , 2006 .

[68]  Paul W. Cleary,et al.  Analysis of stirred mill performance using DEM simulation: Part 1 -Media motion, energy consumption and collisional environment , 2006 .

[69]  Fundamentals of Early Clinical Drug Development: From Synthesis Design to Formulation , 2006 .

[70]  G. P. Martin,et al.  Development of a laser diffraction method for the determination of the particle size of aerosolised powder formulations. , 2006, International journal of pharmaceutics.

[71]  Massimo Pisu,et al.  Modelling of comminution processes in Spex Mixer/Mill , 2006 .

[72]  G. Amidon,et al.  Particle size limits to meet USP content uniformity criteria for tablets and capsules. , 2006, Journal of pharmaceutical sciences.

[73]  A general approach for the characterization of fragmentation problems , 2007 .

[74]  J. Bao,et al.  Numerical simulation of particle dynamics in different flow regimes in a rotating drum , 2007 .

[75]  Rob Morrison,et al.  The future of comminution modelling , 2007 .

[76]  Me Aulton,et al.  Aulton's pharmaceutics: the design and manufacture of medicines , 2007 .

[77]  Paul W. S. Heng,et al.  Process Analytical Technology: Application to Particle Sizing in Spray Drying , 2008, AAPS PharmSciTech.

[78]  A. Yu,et al.  Discrete particle simulation of particulate systems: Theoretical developments , 2007 .

[79]  Don W. Green,et al.  Perry's Chemical Engineers' Handbook , 2007 .

[80]  Sebastian Schmidt-Lehr,et al.  Online-Kontrolle der Partikelgröße während einer Wirbelschichtgranulation : Untersuchung einer neuartigen Lasersonde zur besseren Kontrolle des Partikelgrößenwachstums in der Wirbelschichtgranulation , 2007 .

[81]  Carolyn A. Koh,et al.  Measuring the particle size of a known distribution using the focused beam reflectance measurement technique , 2008 .

[82]  Jennifer B Dressman,et al.  Dissolution enhancement of fenofibrate by micronization, cogrinding and spray-drying: comparison with commercial preparations. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[83]  Luke R Schenck,et al.  Impact milling of pharmaceutical agglomerates in the wet and dry states. , 2008, International journal of pharmaceutics.

[84]  Paul W. Cleary,et al.  DEM prediction of particle flows in grinding processes , 2008 .

[85]  Wolfgang Peukert,et al.  Characterization of the grinding behaviour in a single particle impact device: studies on pharmaceutical powders. , 2008, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[86]  Bruno C. Hancock,et al.  Evaluation of dynamic image analysis for characterizing pharmaceutical excipient particles. , 2008, International journal of pharmaceutics.

[87]  Paul W. Cleary,et al.  Using DEM to compare the energy efficiency of pilot scale ball and tower mills , 2009 .

[88]  Luís Marcelo Tavares,et al.  Modeling breakage rates of coarse particles in ball mills , 2009 .

[89]  Wolfgang Marquardt,et al.  Estimation of particle size distributions from focused beam reflectance measurements based on an optical model , 2009 .

[90]  Luís Marcelo Tavares,et al.  Analysis of particle fracture by repeated stressing as damage accumulation , 2009 .

[91]  Henk G. Merkus,et al.  Particle Size Measurements: Fundamentals, Practice, Quality , 2009 .

[92]  A. Tinke,et al.  A review of underlying fundamentals in a wet dispersion size analysis of powders , 2009 .

[93]  Byung-Man Kwak,et al.  Laser diffraction particle sizing by wet dispersion method for spray-dried infant formula , 2009 .

[94]  Jennifer S. Curtis,et al.  Predicting the flow mode from hoppers using the discrete element method , 2009 .

[95]  Paul W. Cleary,et al.  Industrial particle flow modelling using discrete element method , 2009 .

[96]  A. W. Vreman,et al.  A basic population balance model for fluid bed spray granulation , 2009 .

[97]  Bruno C. Hancock,et al.  Process modeling in the pharmaceutical industry using the discrete element method. , 2009, Journal of pharmaceutical sciences.

[98]  Gavin K. Reynolds Modelling of pharmaceutical granule size reduction in a conical screen mill , 2010 .

[99]  Runyu Yang,et al.  Effects of disc rotation speed and media loading on particle flow and grinding performance in a horizontal stirred mill , 2010 .

[100]  Benjamin J. Glasser,et al.  Large-scale powder mixer simulations using massively parallel GPUarchitectures , 2010 .

[101]  Martin Kuentz,et al.  Different modes of dynamic image analysis in monitoring of pharmaceutical dry milling process. , 2010, International journal of pharmaceutics.

[102]  Krist V. Gernaey,et al.  A model-based systems approach to pharmaceutical product-process design and analysis , 2010 .

[103]  Kevin D. Seibert,et al.  MILLING OPERATIONS IN THE PHARMACEUTICAL INDUSTRY , 2010, Chemical Engineering in the Pharmaceutical Industry.

[104]  Paul W. Cleary,et al.  An investigation of the comparative behaviour of alternative contact force models during elastic collisions , 2011 .

[105]  W. Ketterhagen,et al.  Modeling the motion and orientation of various pharmaceutical tablet shapes in a film coating pan using DEM. , 2011, International journal of pharmaceutics.

[106]  Robert W. Bondi,et al.  Quality by Design and the Importance of PAT in QbD , 2011 .

[107]  Petrak Dieter,et al.  In-line particle sizing for real-time process control by fibre-optical spatial filtering technique (SFT) , 2011 .

[108]  Kai H. Luo,et al.  Modelling discrete fragmentation of brittle particles , 2011 .

[109]  Yanmin Wang,et al.  Parameter effects on dry fine pulverization of alumina particles in a fluidized bed opposed jet mill , 2011 .

[110]  C Vervaet,et al.  Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. , 2011, International journal of pharmaceutics.

[111]  Bodhisattwa Chaudhuri,et al.  Contact drying: a review of experimental and mechanistic modeling approaches. , 2012, International journal of pharmaceutics.

[112]  Dana Barrasso,et al.  A comparison of model order reduction techniques for a four-dimensional population balance model describing multi-component wet granulation processes , 2012 .

[113]  Gavin K Reynolds,et al.  Mechanistic insights into the dissolution of spray-dried amorphous solid dispersions. , 2012, Journal of pharmaceutical sciences.

[114]  Benjamin J. Glasser,et al.  DEM simulation of continuous tablet coating: Effects of tablet shape and fill level on inter-tablet coating variability , 2012 .

[115]  I. C. Sinka,et al.  Effect of particle size and density on the die fill of powders. , 2013, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[116]  D. Barlow,et al.  apid characterisation of the inherent dispersibility of respirable powders using ry dispersion laser diffraction , 2013 .

[117]  Rohit Ramachandran,et al.  A multi-dimensional population balance model approach to continuous powder mixing processes , 2013 .

[118]  M. Shaw,et al.  Investigation of comminution in a Wiley Mill: Experiments and DEM Simulations , 2013 .

[119]  Ana F T Silva,et al.  Particle sizing measurements in pharmaceutical applications: comparison of in-process methods versus off-line methods. , 2013, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[120]  Magnus Evertsson,et al.  The contribution of DEM to the science of comminution , 2013 .

[121]  Dana Barrasso,et al.  Population Balance Model Validation and Predictionof CQAs for Continuous Milling Processes: toward QbDin Pharmaceutical Drug Product Manufacturing , 2013, Journal of Pharmaceutical Innovation.

[122]  E. Fisher Milling of Active Pharmaceutical Ingredients , 2013 .

[123]  Amit Mehrotra,et al.  Real-Time Particle Size Analysis Using Focused Beam Reflectance Measurement as a Process Analytical Technology Tool for a Continuous Granulation–Drying–Milling Process , 2013, AAPS PharmSciTech.

[124]  Marianthi G. Ierapetritou,et al.  Modeling of Particulate Processes for the Continuous Manufacture of Solid-Based Pharmaceutical Dosage Forms , 2013 .

[125]  Nan Gui,et al.  DEM simulation and analysis of particle mixing and heat conduction in a rotating drum , 2013 .

[126]  Luís Marcelo Tavares,et al.  Simulation of solids flow and energy transfer in a vertical shaft impact crusher using DEM , 2013 .

[127]  Haim Kalman,et al.  Accelerating CFD–DEM simulation of processes with wide particle size distributions , 2014 .

[128]  Rajesh N. Dave,et al.  Formulation of a physically motivated specific breakage rate parameter for ball milling via the discrete element method , 2014 .

[129]  R. Davé,et al.  Insight into first-order breakage kinetics using a particle-scale breakage rate constant , 2014 .

[130]  Haim Kalman,et al.  DEM–CFD simulation of particle comminution in jet-mill , 2014 .

[131]  Rajesh N. Dave,et al.  Discrete element method simulation of a conical screen mill: A continuous dry coating device , 2015 .

[132]  T. Anderson,et al.  Fracture mechanics - Fundamentals and applications , 2017 .