Design of Rate-Compatible Irregular LDPC Codes Based on Edge Growth and Parity Splitting

This paper considers the design of rate-compatible low-density parity-check (LDPC) codes with optimized degree distributions for their corresponding rates. The proposed design technique is based on extension, where a high-rate base code, or daughter code, is progressively extended to lower and lower rates such that each extension code is compatible with the previously obtained codes. Specifically, two well-known parity matrix construction methodologies, edge growth and parity splitting, are adapted to yield a flexible framework for constructing rate- compatible parity check matrices with a uniform performance characteristic. The design examples provided are based on extrinsic information transfer (EXIT) chart optimizations and demonstrate good performance up to rates as low as 1/5.

[1]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[2]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[3]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[4]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[5]  Michael Tuchler,et al.  EXIT charts of irregular codes , 2002 .

[6]  Tiffany Jing Li,et al.  Rate-compatible Low Density Parity Check Codes for Capacity-approaching ARQ Schemes in Packet Data Communications , 2002, Communications, Internet, and Information Technology.

[7]  T. Richardson,et al.  Multi-Edge Type LDPC Codes , 2004 .

[8]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[9]  Stephan ten Brink,et al.  Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.

[10]  Faramarz Fekri,et al.  Results on punctured LDPC codes , 2004, Information Theory Workshop.

[11]  Dariush Divsalar,et al.  Accumulate repeat accumulate codes , 2004, ISIT.

[12]  A. Shokrollahi Raptor codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[13]  Christopher R. Jones,et al.  Construction of Rate-Compatible LDPC Codes Utilizing Information Shortening and Parity Puncturing , 2005, EURASIP J. Wirel. Commun. Netw..

[14]  Samuel Dolinar A rate-compatible family of protograph-based LDPC codes built by expurgation and lengthening , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[15]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[16]  N. Varnica,et al.  Incremental Redundancy Hybrid ARQ with LDPC and Raptor Codes , 2005 .

[17]  Jilei Hou,et al.  H-ARQ Rate-Compatible Structured LDPC Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[18]  F. Kschischang,et al.  Incremental Redundancy via Check Splitting , 2006, 23rd Biennial Symposium on Communications, 2006.