Grain boundary phases in bcc metals.

We report a computational discovery of novel grain boundary structures and multiple grain boundary phases in elemental body-centered cubic (bcc) metals represented by tungsten, tantalum and molybdenum. While grain boundary structures created by the γ-surface method as a union of two perfect half crystals have been studied extensively, it is known that the method has limitations and does not always predict the correct ground states. Herein, we use a newly developed computational tool, based on evolutionary algorithms, to perform a grand-canonical search of high-angle symmetric tilt and twist boundaries, and we find new ground states and multiple phases that cannot be described using the conventional structural unit model. We use molecular dynamics (MD) simulations to demonstrate that the new structures can coexist at finite temperature in a closed system, confirming that these are examples of different grain boundary phases. The new ground state is confirmed by first-principles calculations.

[1]  M. Demkowicz,et al.  Non-coherent Cu grain boundaries driven by continuous vacancy loading , 2015, Journal of Materials Science.

[2]  M. Harmer,et al.  Multiple grain boundary transitions in ceramics: A case study of alumina , 2007 .

[3]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[4]  Robert F. Sekerka,et al.  On the thermodynamics of crystalline solids , 1985 .

[5]  Claire S. Adjiman,et al.  Report on the sixth blind test of organic crystal structure prediction methods , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[6]  Y. Mishin,et al.  Thermodynamics of coherent interfaces under mechanical stresses. I. Theory , 2012, 1304.0144.

[7]  W. Kaplan,et al.  Nanometer-Thick Equilibrium Films: The Interface Between Thermodynamics and Atomistics , 2011, Science.

[8]  Smith,et al.  Atomic structure of symmetric tilt grain boundaries in NiO. , 1987, Physical review letters.

[9]  K. Morita,et al.  Atomic periodicity of 〈001〉 symmetric tilt boundary in molybdenum , 1997 .

[10]  Blas P. Uberuaga,et al.  Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission , 2010, Science.

[11]  Y. Mishin,et al.  Phase transformations at interfaces: Observations from atomistic modeling , 2016 .

[12]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[13]  A. Rollett,et al.  Grain boundary energies in body-centered cubic metals , 2015 .

[14]  Shen J. Dillon,et al.  The importance of grain boundary complexions in affecting physical properties of polycrystals , 2016 .

[15]  K. Ichikawa,et al.  Effect of rhenium addition on fracture toughness of tungsten at elevated temperatures , 1995, Journal of Materials Science.

[16]  A. Petford-Long,et al.  Atomic scale structure of sputtered metal multilayers , 2001 .

[17]  W. Craig Carter,et al.  Complexion: A new concept for kinetic engineering in materials science , 2007 .

[18]  S. Phillpot,et al.  Simulated quenching to the zero‐temperature limit of the grand‐canonical ensemble , 1992 .

[19]  J. Belak,et al.  The rigid-body displacement observed at the Σ = 5, (310)-[001] symmetric tilt grain boundary in central transition bcc metals , 2002 .

[20]  James R. Rice,et al.  Embrittlement of interfaces by solute segregation , 1989 .

[21]  W. C. Johnson,et al.  The Thermodynamics of Elastically Stressed Crystals , 2004 .

[22]  M. K. Miller,et al.  EFFECT OF Zr, B AND C ADDITIONS ON THE DUCTILITY OF MOLYBDENUM , 2002 .

[23]  L. Zepeda-Ruiz,et al.  Extraction of effective solid-liquid interfacial free energies for full 3D solid crystallites from equilibrium MD simulations. , 2017, The Journal of chemical physics.

[24]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[25]  J. W. Gibbs,et al.  Scientific Papers , 1997, Nature.

[26]  Qiang Zhu,et al.  Predicting phase behavior of grain boundaries with evolutionary search and machine learning , 2017, Nature Communications.

[27]  P. Sardain,et al.  Power plant conceptual studies in Europe , 2007 .

[28]  M. Hoffmann,et al.  Non-Arrhenius behavior of grain growth in strontium titanate: New evidence for a structural transition of grain boundaries , 2015 .

[29]  Y. Mishin,et al.  Thermodynamics of coherent interfaces under mechanical stresses. II. Application to atomistic simulation of grain boundaries , 2012 .

[30]  John W. Cahn,et al.  Thermochemical equilibrium of multiphase solids under stress , 1978 .

[31]  G. P. P. Pun,et al.  Angular-dependent interatomic potential for the Cu–Ta system and its application to structural stability of nano-crystalline alloys , 2015 .

[32]  Martin P. Harmer,et al.  The Phase Behavior of Interfaces , 2011, Science.

[33]  Artem R. Oganov,et al.  Evolutionary Method for Predicting Surface Reconstructions with Variable Stoichiometry: Application GaN (101bar1) Surface with Oxygen Adatoms , 2013, 1301.5879.

[34]  U Dahmen,et al.  Chevron defect at the intersection of grain boundaries with free surfaces in Au. , 2002, Physical review letters.

[35]  Mario Valle,et al.  How to predict very large and complex crystal structures , 2010, Comput. Phys. Commun..

[36]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[37]  K. Lu,et al.  Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale , 2009, Science.

[38]  S. Divinski,et al.  Diffusion and segregation of silver in copperΣ5(310) grain boundary , 2012 .

[39]  Qiang Zhu,et al.  Generalized evolutionary metadynamics for sampling the energy landscapes and its applications , 2015 .

[40]  M. Asta,et al.  Step free energies at faceted solid-liquid interfaces from equilibrium molecular dynamics simulations. , 2012, The Journal of chemical physics.

[41]  Materials selection rules for amorphous complexion formation in binary metallic alloys , 2017, 1708.02971.

[42]  T. Frolov Effect of interfacial structural phase transitions on the coupled motion of grain boundaries: A molecular dynamics study , 2014, 1405.3688.

[43]  Martin P. Harmer,et al.  Interfacial Kinetic Engineering: How Far Have We Come Since Kingery's Inaugural Sosman Address? , 2010 .

[44]  A. Voter,et al.  Influence of point defects on grain boundary mobility in bcc tungsten , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  P. Tasker,et al.  On the structure of twist grain boundaries in ionic oxides , 1983 .

[46]  T. Nieh Grain boundary segregation of Ni in W , 1984 .

[47]  W. Setyawan,et al.  Ab initio study of H, He, Li and Be impurity effect in tungsten Σ3{1 1 2} and Σ27{5 5 2} grain boundaries , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  R. Johnson,et al.  Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers , 2004 .

[49]  David J. Srolovitz,et al.  The grain-boundary structural unit model redux , 2017 .

[50]  Y. Mishin,et al.  Phases, phase equilibria, and phase rules in low-dimensional systems. , 2015, The Journal of chemical physics.

[51]  Steven J. Zinkle,et al.  Designing Radiation Resistance in Materials for Fusion Energy , 2014 .

[52]  G. Rohrer The role of grain boundary energy in grain boundary complexion transitions , 2016 .

[53]  Ab initio search for cohesion-enhancing impurity elements at grain boundaries in molybdenum and tungsten , 2016 .

[54]  P D Haynes,et al.  Are the structures of twist grain boundaries in silicon ordered at 0 K? , 2006, Physical review letters.

[55]  J. Belak,et al.  Atomic structure of the Σ5 (310)/[001] symmetric tilt grain boundary in molybdenum , 1999 .

[56]  Q. Fang,et al.  Segregation of alloying atoms at a tilt symmetric grain boundary in tungsten and their strengthening and embrittling effects , 2014 .

[57]  F. Lançon,et al.  Stability of the chevron domain at triple-line reconstructions , 2004 .

[58]  W. Setyawan,et al.  Effects of transition metals on the grain boundary cohesion in tungsten , 2012 .

[59]  D. Wolf Structure and energy of general grain boundaries in bcc metals , 1991 .

[60]  Amit Misra,et al.  Effect of grain boundary character on sink efficiency , 2012 .

[61]  Qiang Zhu,et al.  Predicting polymeric crystal structures by evolutionary algorithms. , 2014, The Journal of chemical physics.

[62]  M. Finnis,et al.  A genetic algorithm for predicting the structures of interfaces in multicomponent systems. , 2010, Nature materials.

[63]  V. Vítek,et al.  Grain-boundary metastability and its statistical properties , 2016 .

[64]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[65]  A. Oganov,et al.  How evolutionary crystal structure prediction works--and why. , 2011, Accounts of chemical research.

[66]  C. S. Liu,et al.  First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute , 2016 .

[67]  Qiang Zhu,et al.  New developments in evolutionary structure prediction algorithm USPEX , 2013, Comput. Phys. Commun..

[68]  David L. Olmsted,et al.  Structural phase transformations in metallic grain boundaries , 2012, Nature Communications.

[69]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[70]  I. Novoselov,et al.  Impact of segregated interstitials on structures and energies of tilt grain boundaries in Mo , 2016 .

[71]  M. Harmer,et al.  Grain Boundary Complexions , 2014 .

[72]  K. Ho,et al.  Finding the low-energy structures of Si[001] symmetric tilted grain boundaries with a genetic algorithm , 2009 .

[73]  D. Wolf Correlation between the energy and structure of grain boundaries in b.c.c. metals I. Symmetrical boundaries on the (110) and (100) planes , 1989 .

[74]  Xin Sun,et al.  Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α -Fe , 2012 .

[75]  Y. Mishin,et al.  Segregation-induced phase transformations in grain boundaries , 2015, 1506.08882.

[76]  T. Arias,et al.  Atomic-level physics of grain boundaries in bcc molybdenum , 2001 .

[77]  Y. Chiang,et al.  Origin of Solid‐State Activated Sintering in Bi2O3‐Doped ZnO , 1999 .

[78]  Jonathan A. Zimmerman,et al.  Defect character at grain boundary facet junctions: Analysis of an asymmetric Σ = 5 grain boundary in Fe , 2017 .

[79]  M. Harmer,et al.  The Role of a Bilayer Interfacial Phase on Liquid Metal Embrittlement , 2011, Science.

[80]  Andrew G. Glen,et al.  APPL , 2001 .

[81]  F. Flores,et al.  Interfaces in crystalline materials , 1994, Thin Film Physics and Applications.

[82]  P. Puschnig,et al.  Ab initio description of segregation and cohesion of grain boundaries in W–25 at.% Re alloys , 2015 .

[83]  Qiang Zhu,et al.  Semimetallic Two-Dimensional Boron Allotrope with Massless Dirac Fermions , 2013, 1309.2596.

[84]  Y. Mishin,et al.  Effect of interface phase transformations on diffusion and segregation in high-angle grain boundaries. , 2013, Physical review letters.

[85]  Lisa Ventelon,et al.  Interatomic potentials for modelling radiation defects and dislocations in tungsten , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[86]  A. Karma,et al.  Dislocation-pairing transitions in hot grain boundaries. , 2011, Physical review letters.

[87]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[88]  R. Hoagland,et al.  The relation between grain-boundary structure and sliding resistance , 2002 .