Low-frequency noise in nanomaterials and nanodevices

The status of low frequency noise in nanodevices and nanomaterials is briefly surveyed. The very old yet hot problematics of the 1/f noise is discussed in the light of some new achievements in the nanoscience. It is shown that the very old question regarding the topology of the noise sources (surface or bulk origin) of this phenomenon is clarified, while the microscopic origin of the phenomenon cannot be unambiguously answered. Although present even in the quantum dots, the random telegraph signal (RTS) noise as a fundamental component of the 1/f spectrum seems to be a non sequitur. McWhorter model cannot explain the occurrence of the 1/f noise in carbon nanotubes. Surface anharmonicity is proposed as a possible ingredient in the generation of the very high noise level observed in carbon nanotubes, while the increased phonon density of states in nanomaterials seems to be a source of higher noise levels. Low frequency noise appears as a powerful tool to characterize nanomaterials and nanodevices.

[1]  G. Ghibaudo,et al.  Impact of scaling down on low frequency noise in silicon MOS transistors , 1992 .

[2]  Alexios Birbas,et al.  Burst-type noise mechanisms in bipolar transistors , 1989 .

[3]  T. Rahman,et al.  Vibrational Properties of Metallic Nanocrystals , 1998 .

[4]  David J. Frank,et al.  Nanoscale CMOS , 1999, Proc. IEEE.

[5]  Jonathan L. Cobb,et al.  MODULATION OF THE CHARGE OF A SINGLE-ELECTRON TRANSISTOR BY DISTANT DEFECTS , 1997 .

[6]  Jaap I. Dijkhuis,et al.  Random telegraph signals and 1/f noise in a silicon quantum dot , 1999 .

[7]  Petr Vasina,et al.  Channel length scaling of 1/f noise in 0.18 μm technology MDD n-MOSFETs , 1999 .

[8]  J. Niemeyer,et al.  Noise in Al single electron transistors of stacked design , 1998, cond-mat/9804197.

[9]  W. Schottky Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern , 1918 .

[10]  F. Wellstood,et al.  Temperature dependence of low-frequency noise in AlAl2O3Al single-electron transistors , 2000 .

[11]  Alexander A. Balandin,et al.  The fundamental 1/f noise and the Hooge parameter in semiconductor quantum wires , 1999 .

[12]  David J. Nesbitt,et al.  ``On''/``off'' fluorescence intermittency of single semiconductor quantum dots , 2001 .

[13]  L. Kiss,et al.  Electrical Noise in Nanocrystalline Films , 1998 .

[14]  P. Hakonen,et al.  Multiwalled carbon nanotubes as ultrasensitive electrometers , 2001 .

[15]  T. Kenny,et al.  1/f noise considerations for the design and process optimization of piezoresistive cantilevers , 2000, Journal of Microelectromechanical Systems.

[16]  Michael J. Uren,et al.  1/f and random telegraph noise in silicon metal‐oxide‐semiconductor field‐effect transistors , 1985 .

[17]  France.,et al.  Observation of the e/3 Fractionally Charged Laughlin Quasiparticle , 1997, cond-mat/9706307.

[18]  Quantum interference in a vacuum nanotriode , 2000 .

[19]  M. Mihaila PHONON-INDUCED 1/F NOISE IN MOS TRANSISTORS , 2001 .

[20]  Cor Claeys,et al.  On the flicker noise in submicron silicon MOSFETs , 1999 .

[21]  Rolf Landauer,et al.  Condensed-matter physics: The noise is the signal , 1998, Nature.

[22]  T. Claeson,et al.  Gain dependence of the noise in the single electron transistor , 1998, cond-mat/9806354.

[23]  Haroon Ahmed,et al.  Single electron electronics: Challenge for nanofabrication , 1997 .

[24]  Pertti Hakonen,et al.  Single-electron transistor made of two crossing multiwalled carbon nanotubes and its noise properties , 2000 .

[25]  P. Castrillo,et al.  Random telegraph noise in photoluminescence from individual self-assembled quantum dots , 1999 .

[26]  Laszlo B. Kish,et al.  Noise in nanotechnology , 2000 .

[27]  Philip G. Collins,et al.  1/f noise in carbon nanotubes , 2000 .

[28]  J. E. Mooij,et al.  Fabrication of multilayer single‐electron tunneling devices , 1995 .

[29]  Wolf,et al.  Background charge noise in metallic single-electron tunneling devices. , 1996, Physical review. B, Condensed matter.

[30]  Toshiro Hiramoto,et al.  Impact of the device scaling on the low-frequency noise in n-MOSFETs , 2000 .

[31]  A. Dianoux,et al.  Neutron scattering studies of the structure and dynamics of nanobundles of single-wall carbon nanotubes , 1999 .

[32]  T. Eiles,et al.  Noise in the Coulomb blockade electrometer , 1992 .

[33]  M. Mihaila Phonon Fine Structure in the 1/ f Noise of Metals, Semiconductors and Semiconductor Devices , 2000 .

[34]  R. Howard,et al.  Discrete Resistance Switching in Submicrometer Silicon Inversion Layers: Individual Interface Traps and Low-Frequency ( 1 f ?) Noise , 1984 .

[35]  J. Mygind,et al.  Low-frequency noise in single electron tunneling transistor , 1998 .

[36]  R. M. Ryder,et al.  Some circuit aspects of the transistor , 1949, Bell Syst. Tech. J..

[37]  M. Pistol Spectroscopic studies of random telegraph noise in self-assembled InP quantum dots in GaInP , 2001 .

[38]  Samuel Martin,et al.  Device noise in silicon RF technologies , 1997, Bell Labs Technical Journal.

[39]  J. Johnson,et al.  The Schottky Effect in Low Frequency Circuits , 1925 .

[40]  Konstantin K. Likharev,et al.  Single-electron devices and their applications , 1999, Proc. IEEE.

[41]  F. Hooge 1/ƒ noise is no surface effect , 1969 .

[42]  Single electron switching events in nanometer-scale Si MOSFET's , 1985, IEEE Transactions on Electron Devices.

[43]  J. E. Mooij,et al.  Optimization of island size in single electron tunneling devices: Experiment and theory , 1995 .