Synchronization of Discrete Sprott Chaotic Systems and Its Application in Secure Communication

In this paper, synchronization of discrete master-slave Sprott chaotic systems and its application in secure communication are presented. We utilize a discrete sliding mode scheme to solve the synchronization problem of discrete Sprott chaotic systems. The proposed scheme guarantees the synchronization between the master and slave discrete Sprott chaotic systems based on the use of Lyapunov stability theory. Moreover, the selection of switching surface and the existence of discrete sliding mode are addressed. Finally, the experimental results validate the proposed chaotic synchronization approach.

[1]  Vadim I. Utkin,et al.  Sliding Modes and their Application in Variable Structure Systems , 1978 .

[2]  H. N. Agiza,et al.  Chaos synchronization of Lü dynamical system , 2004 .

[3]  Jitao Sun,et al.  Impulsive control and synchronization of Chua's oscillators , 2004, Math. Comput. Simul..

[4]  Ming-Jyi Jang,et al.  Sliding Mode Control of Chaos in the cubic Chua's Circuit System , 2002, Int. J. Bifurc. Chaos.

[5]  Peter Liu,et al.  Secure communications of chaotic systems with robust performance via fuzzy observer-based design , 2001, IEEE Trans. Fuzzy Syst..

[6]  Peter Liu,et al.  Synthesis of fuzzy model-based designs to synchronization and secure communications for chaotic systems , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[7]  Haizhen He,et al.  Time-controllable combinatorial inner synchronization and outer synchronization of anti-star networks and its application in secure communication , 2015, Commun. Nonlinear Sci. Numer. Simul..

[8]  H. Agiza,et al.  Controlling and Synchronization of Rossler System with Uncertain Parameters , 2004 .

[9]  Daolin Xu,et al.  Control of the formation of projective synchronisation in lower-dimensional discrete-time systems , 2003 .

[10]  Ju H. Park Adaptive Synchronization of a Unified Chaotic System with an Uncertain Parameter , 2005 .

[11]  Choon Ki Ahn,et al.  L_2-L_∞ Chaos Synchronization(General and Mathematical Physics) , 2010 .

[12]  Mauricio Zapateiro,et al.  A modified Chua chaotic oscillator and its application to secure communications , 2014, Appl. Math. Comput..

[13]  Leon O. Chua,et al.  Secure communication via chaotic parameter modulation , 1996 .

[14]  Mohammad Shahrokhi,et al.  Chaos Synchronization , 2015 .

[15]  Ivan Zelinka,et al.  Chaos synchronization of unknown inputs Takagi-Sugeno fuzzy: Application to secure communications , 2014, Comput. Math. Appl..

[16]  Weigao Ge,et al.  Periodic solution and chaotic strange attractor for shunting inhibitory cellular neural networks with impulses. , 2006, Chaos.

[17]  Pei Yu,et al.  Chaos control for the family of Rössler systems using feedback controllers , 2006 .

[18]  Teh-Lu Liao,et al.  An observer-based approach for chaotic synchronization with applications to secure communications , 1999 .

[19]  M. Yan,et al.  Robust discrete-time sliding mode control for uncertain systems with time-varying state delay , 2008 .

[20]  Yaghoub Heidari,et al.  Adaptive Robust Pid Controller Design Based On A Sliding Mode For Uncertain Chaotic Systems , 2012 .

[21]  Leang-San Shieh,et al.  Digital controller design for Bouc–Wen model with high-order hysteretic nonlinearities through approximated scalar sign function , 2011, Int. J. Syst. Sci..

[22]  Cheng-Fang Huang,et al.  Design and implementation of digital secure communication based on synchronized chaotic systems , 2010, Digit. Signal Process..

[23]  José Manoel Balthazar,et al.  On an optimal control design for Rössler system , 2004 .

[24]  Ce Richard Liu,et al.  Digital design of combined PI and state feedback controller for non-linear stochastic systems , 2008, IMA J. Math. Control. Inf..

[25]  Nour Branch,et al.  Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems , 2012 .