Strain localization in geomaterials

Abstract The main purpose of this paper is a broad review of developments in observation and interpretation of localization in geomaterials in the laboratory, with an emphasis on low mean stress situations. Laboratory investigation of strain localization in granular soils and rocks has been pursued extensively and very accurate strain field evolution measurement techniques have been developed, including false relief stereophotogrammetry (FRS) and computed tomography (CT). These permit full characterization of strain localization, from onset to complete shear band formation. This paper reviews studies of sand, clay, sandstone, stiff marl and concrete, and observations of incipient and developed localization in initially ‘homogeneous’ laboratory tests are presented. Development of localization and peak strength, critical stress and strain, shear band orientation and thickness, and complex localization patterns are discussed. Deformation during triaxial compression of sand is shown to develop complex strain localization patterns. Consequently, the critical void ratio concept in granular materials is reconsidered. Void ratio evolution, global and local, monitored by CT, shows a limiting void ratio being rapidly attained in the strain localization zones. In cohesive materials (clays, rocks and concrete), crack development is also commonly observed. Displacement discontinuity measurement techniques are presented and the results for different cohesive geomaterials are discussed.

[1]  Fumio Tatsuoka,et al.  STRENGTH ANISOTROPY AND SHEAR BAND DIRECTION IN PLANE STRAIN TESTS OF SAND , 1990 .

[2]  Ioannis Vardoulakis,et al.  Bifurcation analysis of the triaxial test on sand samples , 1979 .

[3]  J. Rice,et al.  CONDITIONS FOR THE LOCALIZATION OF DEFORMATION IN PRESSURE-SENSITIVE DILATANT MATERIALS , 1975 .

[4]  Pierre Bésuelle,et al.  Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell , 2000 .

[5]  M. Goldscheider,et al.  Formation of shear bands in sand bodies as a bifurcation problem , 1978 .

[6]  J. Petit,et al.  Criteria for the sense of movement on fault surfaces in brittle rocks , 1987 .

[7]  David Muir Wood,et al.  Experimental observations of shear band patterns in direct shear tests , 1982 .

[8]  H. El APPLICATION DE LA STEREOPHOTOGRAMMETRIE AU BETON : CAS DE LA COMPRESSION SIMPLE , 1992 .

[9]  G. Mandl,et al.  Shear zones in granular material , 1977 .

[10]  René Chambon,et al.  Localization criteria for non‐linear constitutive equations of geomaterials , 2000 .

[11]  Jean-Pierre Petit,et al.  The mechanics of fault distribution and localization in high-porosity sands, Provence, France , 2007 .

[12]  Melvin Friedman,et al.  Experimental Deformation of Sedimentary Rocks Under Confining Pressure: Pore Pressure Tests , 1963 .

[13]  龍岡 文夫,et al.  Strength and deformation characteristics of sand in plane strain compression at extremely low pressures. , 1986 .

[14]  Teng-fong Wong,et al.  The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation , 1997 .

[15]  Emmanuelle Klein,et al.  Compaction localization in porous sandstones: spatial evolution of damage and acoustic emission activity , 2004 .

[16]  Claude Boulay,et al.  Stereophotogrammetry and Localization in Concrete under Compression , 1991 .

[17]  A. Bishop The use of the Slip Circle in the Stability Analysis of Slopes , 1955 .

[18]  P. Bésuelle Compacting and dilating shear bands in porous rock: Theoretical and experimental conditions , 2001 .

[19]  J. Rice Localization of plastic deformation , 1976 .

[20]  T Dunstan,et al.  Rupture layers in granular media , 1982 .

[21]  R. Charlier,et al.  Soil Modelling with regard to consistency: CLOE, a new rate type constitutive model. , 1991 .

[22]  R. F. Scott Twenty-seventh Rankine Lecture: failure , 1987 .

[23]  D. Muir Wood,et al.  Localisation and bifurcation theory for soils and rocks , 1998 .

[24]  R. Chambon,et al.  Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography , 1996 .

[25]  P Lade,et al.  EFFECTS OF LOCALIZATION IN TRIAXIAL TESTS ON CLAY. PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON SOIL MECHANICS AND FOUNDATION ENGINEERING, SAN FRANCISCO, 12-16 AUGUST 1985 , 1985 .

[26]  A. Aydin Small faults formed as deformation bands in sandstone , 1978 .

[27]  P. Hancock The Relations Between Folds and Late-Formed Joints in South Pembrokeshire , 1964, Geological Magazine.

[28]  N. Bayley,et al.  Failure , 1890, The Hospital.

[29]  John M. Logan,et al.  Experimental folding and faulting of rocks under confining pressure Part IX. Wrench faults in limestone layers , 1981 .

[30]  Ioannis Vardoulakis,et al.  Calibration of constitutive models for granular materials using data from biaxial experiments , 1985 .

[31]  René Chambon,et al.  Shear band analysis and shear moduli calibration , 2002 .

[32]  Teng-fong Wong,et al.  MICROMECHANICS OF FAULTING IN WESTERLY GRANITE , 1982 .

[33]  L. F. Herzog,et al.  Sediment Age Determination by Rb/Sr Analysis of Glauconite , 1958 .

[34]  Gioacchino Viggiani,et al.  Strain Localization and Undrained Steady State of Sand , 1996 .

[35]  C. Dengo,et al.  Chapter 2 Fabrics of Experimental Fault Zones: Their Development and Relationship to Mechanical Behavior , 1992 .

[36]  J. Tullis,et al.  Experimental deformation of dry westerly granite , 1977 .

[37]  Jacques Desrues,et al.  Localization of the deformation in tests on sand sample , 1985 .

[38]  I. Vardoulakis Deformation of water-saturated sand: II. effect of pore water flow and shear banding , 1996 .

[39]  C A Coulomb,et al.  ESSAI SUR UNE APPLICATION DES REGLES DE MAXIMIS ET MINIMIS A QUELQUES PROBLEMES DE STATIQUE RELATIFS A L'ARCHITECTURE (ESSAY ON MAXIMUMS AND MINIMUMS OF RULES TO SOME STATIC PROBLEMS RELATING TO ARCHITECTURE) , 1973 .

[40]  M. Mokni Relations entre déformations en masse et déformations localisées dans les matériaux granulaires , 1992 .

[41]  Jacques Desrues,et al.  Triaxial testing of granular soil under elevated cell pressure , 1988 .

[42]  Gioacchino Viggiani,et al.  X-ray microtomography for studying localized deformation in fine-grained geomaterials under triaxial compression , 2004 .

[43]  I. Vardoulakis Deformation of water-saturated sand: I. uniform undrained deformation and shear banding , 1996 .

[44]  Beatriz Menéndez,et al.  Micromechanics of brittle faulting and cataclastic flow in Berea sandstone , 1996 .

[45]  Jean Sulem,et al.  MICROSTRUCTURE OF SHEAR ZONES IN FONTAINEBLEAU SANDSTONE , 2002 .

[46]  M. Antonellini,et al.  Effect of Faulting on Fluid Flow in Porous Sandstones: Petrophysical Properties , 1994 .

[47]  J. Desrues,et al.  Mesure du champ de déformation d'un objet plan par la méthode stéréophotogrammétrique de faux relief , 1984 .

[48]  E. Rutter Experimental Rock Deformation—the Brittle Field , 1979 .

[49]  Jacques Desrues,et al.  Bifurcation par Localisation de la Déformation: Etude Expérimentale et Théorique à l’Essai Biaxial sur Sable , 1986 .

[50]  R. Chambon,et al.  Shear band analysis for granular materials: The question of incremental non-linearity , 1989 .

[51]  I. G. Vardoulakis,et al.  Plane-strain compression experiments on water-saturated fine-grained sand , 1991 .

[52]  W. F. Brace A note on permeability changes in geologic material due to stress , 1978 .

[53]  Gioacchino Viggiani,et al.  Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry , 2004 .

[54]  W. Brace Laboratory studies of stick-slip and their application to earthquakes , 1972 .

[55]  W. R. Wawersik,et al.  A study of brittle rock fracture in laboratory compression experiments , 1970 .

[56]  R. Kajewski,et al.  Shear band formation in Gosford sandstone , 1991 .

[57]  Ioannis Vardoulakis,et al.  GEOMETRIC SOFTENING IN TRIAXIAL TESTS ON GRANULAR MATERIAL , 1982 .

[58]  É. Flavigny,et al.  NOTE TECHNIQUE - LE SABLE D'HOSTUN "RF" , 1990 .

[59]  S. Uehara,et al.  Permeability of fault rocks from the Median Tectonic Line in Ohshika-mura, Nagano, Japan as studied by pressure-cycling tests , 2007 .

[60]  Pierre-Yves Hicher,et al.  Microstructural analysis of strain localisation in clay , 1994 .

[61]  Jacques Desrues,et al.  Strain localization measurements in undrained plane-strain biaxial tests on Hostun RF sand , 1999 .

[62]  I. Vardoulakis,et al.  Bifurcation Analysis in Geomechanics , 1995 .

[63]  M. Antonellini,et al.  Effect of Faulting on Fluid Flow in Porous Sandstones: Geometry and Spatial Distribution , 1995 .

[64]  J. R. F. Arthur,et al.  Plastic deformation and failure in granular media , 1977 .

[65]  W. Brace A note on permeability changes in geologic material due to stress , 1978 .