Boundedness in a chemotaxis-haptotaxis model with gradient-dependent flux limitation

Abstract This paper deals with a chemotaxis–haptotaxis system with gradient-dependent flux-limitation u t = Δ u − χ ∇ ⋅ ( u f ( | ∇ v | 2 ) ∇ v ) − ξ ∇ ⋅ ( u ∇ w ) + μ u ( 1 − u − w ) , x ∈ Ω , t > 0 , v t = Δ v − v + u , x ∈ Ω , t > 0 , w t = − v w , x ∈ Ω , t > 0 , under a smooth bounded domain Ω ⊂ R n , n ∈ { 2 , 3 } , where χ , ξ and μ are positive parameters, f ∈ C 2 ( [ 0 , ∞ ) ) satisfies the condition f ( | ∇ v | 2 ) ≤ ( 1 + ( | ∇ v | 2 ) ) p − 2 2 , with 1 p n n − 1 . It is proved that for sufficiently smooth initial data ( u 0 , v 0 , w 0 ) , the corresponding initial–boundary problem possesses a unique classical solution, which is uniformly bounded in time.

[1]  Mingjun Wang,et al.  A Combined Chemotaxis-haptotaxis System: The Role of Logistic Source , 2009, SIAM J. Math. Anal..

[2]  Michael Winkler,et al.  Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model , 2010 .

[3]  Christoph Walker,et al.  Global Existence of Classical Solutions for a Haptotaxis Model , 2007, SIAM J. Math. Anal..

[4]  M. Negreanu,et al.  On a parabolic–elliptic system with gradient dependent chemotactic coefficient , 2018, Journal of Differential Equations.

[5]  M. Winkler,et al.  A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production , 2019, Communications on Pure & Applied Analysis.

[6]  Yifu Wang,et al.  Boundedness in the higher-dimensional chemotaxis–haptotaxis model with nonlinear diffusion , 2016 .

[7]  Pan Zheng,et al.  On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion , 2015 .

[8]  P. Verde,et al.  Signal transduction and the u-PA/u-PAR system , 1996 .

[9]  K. Painter,et al.  A mathematical model for lymphangiogenesis in normal and diabetic wounds. , 2015, Journal of theoretical biology.

[10]  Juan Soler,et al.  MULTISCALE BIOLOGICAL TISSUE MODELS AND FLUX-LIMITED CHEMOTAXIS FOR MULTICELLULAR GROWING SYSTEMS , 2010 .

[11]  Nicholas D. Alikakos,et al.  LP Bounds of solutions of reaction-diffusion equations , 1979 .

[12]  Christian Stinner,et al.  Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions , 2011, 1112.6202.

[13]  L. Liotta,et al.  Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells , 1990, The Journal of cell biology.

[14]  M. Winkler A critical blow-up exponent for flux limiation in a Keller-Segel system , 2020, Indiana University Mathematics Journal.

[15]  M. Winkler Suppressing blow-up by gradient-dependent flux limitation in a planar Keller–Segel–Navier–Stokes system , 2021, Zeitschrift für angewandte Mathematik und Physik.

[16]  M. Winkler Conditional estimates in three-dimensional chemotaxis-Stokes systems and application to a Keller-Segel-fluid model accounting for gradient-dependent flux limitation , 2020, 2009.07074.

[17]  M. Chaplain,et al.  Mathematical modelling of cancer cell invasion of tissue , 2005, Math. Comput. Model..

[18]  Nicola Bellomo,et al.  Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues , 2015 .

[19]  Yuxiang Li,et al.  On a parabolic-parabolic system with gradient dependent chemotactic coefficient and consumption , 2019, Journal of Mathematical Physics.

[20]  Mostafa Bendahmane,et al.  On a doubly nonlinear diffusion model of chemotaxis with prevention of overcrowding , 2009 .

[21]  Michael Winkler,et al.  Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis System with Logistic Source , 2010 .

[22]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[23]  Michael Winkler,et al.  Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect , 2010 .

[24]  M. Winkler,et al.  Dominance of chemotaxis in a chemotaxis–haptotaxis model , 2014 .

[25]  J. Burczak,et al.  Boundedness of large-time solutions to a chemotaxis model with nonlocal and semilinear flux , 2014, 1409.8102.

[26]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[27]  N. Bellomo,et al.  A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up , 2016, 1605.01924.

[28]  Johannes Lankeit,et al.  Boundedness in a chemotaxis–haptotaxis model with nonlinear diffusion , 2015, 1508.05846.

[29]  Youshan Tao Boundedness in a two-dimensional chemotaxis-haptotaxis system , 2014, 1407.7382.

[30]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[31]  Mark A. J. Chaplain,et al.  Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity , 2006, Networks Heterog. Media.