Modelling of fluid-structure interaction with multiphase viscous flows using an immersed-body method

An immersed-body method is developed here to model fluid-structure interaction for multiphase viscous flows. It does this by coupling a finite element multiphase fluid model and a combined finite-discrete element solid model. A coupling term containing the fluid stresses is introduced within a thin shell mesh surrounding the solid surface. The thin shell mesh acts as a numerical delta function in order to help apply the solid-fluid boundary conditions. When used with an advanced interface capturing method, the immersed-body method has the capability to solve problems with fluid-solid interfaces in the presence of multiphase fluid-fluid interfaces. Importantly, the solid-fluid coupling terms are treated implicitly to enable larger time steps to be used. This two-way coupling method has been validated by three numerical test cases: a free falling cylinder in a fluid at rest, elastic membrane and a collapsing column of water moving an initially stationary solid square. A fourth simulation example is of a water-air interface with a floating solid square being moved around by complex hydrodynamic flows including wave breaking. The results show that the immersed-body method is an effective approach for two-way solid-fluid coupling in multiphase viscous flows.

[1]  C C Pain,et al.  Anisotropic mesh adaptivity for multi-scale ocean modelling , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  G. Iaccarino,et al.  Immersed boundary technique for turbulent flow simulations , 2003 .

[3]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[4]  B. J. Mason,et al.  The behaviour of freely falling cylinders and cones in a viscous fluid , 1965, Journal of Fluid Mechanics.

[5]  James J. Feng,et al.  Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid Part 1. Sedimentation , 1994, Journal of Fluid Mechanics.

[6]  Patrick D. Anderson,et al.  A fluid-structure interaction method with solid-rigid contact for heart valve dynamics , 2006, J. Comput. Phys..

[7]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[8]  R. Sani,et al.  Incompressible Flow and the Finite Element Method, Volume 1, Advection-Diffusion and Isothermal Laminar Flow , 1998 .

[9]  Dimitrios Pavlidis,et al.  Modelling of fluid–solid interactions using an adaptive mesh fluid model coupled with a combined finite–discrete element model , 2012, Ocean Dynamics.

[10]  M. Uhlmann An immersed boundary method with direct forcing for the simulation of particulate flows , 2005, 1809.08170.

[11]  C. C. Pain,et al.  An immersed body method for coupled neutron transport and thermal hydraulic simulations of PWR assemblies , 2014 .

[12]  C.R.E. de Oliveira,et al.  Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .

[13]  Costas Tsouris,et al.  Drag coefficient and settling velocity for particles of cylindrical shape , 2008 .

[14]  Ronald Fedkiw,et al.  A symmetric positive definite formulation for monolithic fluid structure interaction , 2011, J. Comput. Phys..

[15]  Jiansheng Xiang,et al.  New modelling and analysis methods for concrete armour unit systems using FEMDEM , 2013 .

[16]  A Viré,et al.  An immersed-shell method for modelling fluid–structure interactions , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Jiansheng Xiang,et al.  Finite strain, finite rotation quadratic tetrahedral element for the combined finite–discrete element method , 2009 .

[18]  S. Sherwin,et al.  Comparison of various fluid-structure interaction methods for deformable bodies , 2007 .

[19]  Z. Feng,et al.  Proteus: a direct forcing method in the simulations of particulate flows , 2005 .

[20]  H. R. Pruppacher,et al.  Some relations between drag and flow pattern of viscous flow past a sphere and a cylinder at low and intermediate Reynolds numbers , 1970, Journal of Fluid Mechanics.

[21]  Rajeev K. Jaiman,et al.  Conservative load transfer along curved fluid-solid interface with non-matching meshes , 2006, J. Comput. Phys..

[22]  Dimitrios Pavlidis,et al.  A two‐phase adaptive finite element method for solid–fluid coupling in complex geometries , 2011 .

[23]  J. Derksen,et al.  Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence , 2004, Journal of Fluid Mechanics.

[24]  van Eh Harald Brummelen,et al.  A monolithic approach to fluid–structure interaction , 2004 .

[25]  Andreas Mark,et al.  Derivation and validation of a novel implicit second-order accurate immersed boundary method , 2008, J. Comput. Phys..

[26]  R. Glowinski,et al.  A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations , 1994 .

[27]  Dmitry Kolomenskiy,et al.  Numerical simulation of fluid-structure interaction with the volume penalization method , 2015, J. Comput. Phys..

[28]  R. P. Smedley-Stevenson,et al.  The immersed body supermeshing method for modelling reactor physics problems with complex internal structures , 2014 .

[29]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[30]  Mathieu Martin,et al.  A numerical method for fully resolved simulation (FRS) of rigid particle-flow interactions in complex flows , 2009, J. Comput. Phys..

[31]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[32]  C. C. Pain,et al.  A mixed discontinuous/continuous finite element pair for shallow-water ocean modelling , 2008, 0805.4380.

[33]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[34]  Christopher C. Pain,et al.  TOWARDS A NUMERICAL WAVE SIMULATOR USING THE TWO-FLUID INTERFACE TRACKING APPROACH COMBINED WITH A NOVEL ALE SCHEME , 2009 .

[35]  C.R.E. de Oliveira,et al.  Three-dimensional unstructured mesh ocean modelling , 2005 .

[36]  E. Oñate,et al.  A monolithic Lagrangian approach for fluid–structure interaction problems , 2010 .

[37]  Patrick E. Farrell,et al.  Conservative interpolation between volume meshes by local Galerkin projection , 2011 .

[38]  D. Dinkler,et al.  A monolithic approach to fluid–structure interaction using space–time finite elements , 2004 .

[39]  Jochen Fröhlich,et al.  An improved immersed boundary method with direct forcing for the simulation of particle laden flows , 2012, J. Comput. Phys..

[40]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[41]  Zhilin Li,et al.  An immersed interface method for solving incompressible viscous flows with piecewise constant viscosity across a moving elastic membrane , 2008, J. Comput. Phys..

[42]  Randall J. LeVeque,et al.  An Immersed Interface Method for Incompressible Navier-Stokes Equations , 2003, SIAM J. Sci. Comput..

[43]  Yuri Bazilevs,et al.  Fluid–structure interaction modeling of wind turbines: simulating the full machine , 2012, Computational Mechanics.

[44]  Christopher C. Pain,et al.  A new computational framework for multi‐scale ocean modelling based on adapting unstructured meshes , 2008 .

[45]  Norimi Mizutani,et al.  NUMERICAL SIMULATION OF BORE-INDUCED DYNAMIC BEHAVIOR OF RIGID BODY USING 2-D MULTIPHASE FLOW NUMERICAL MODEL , 2009 .

[46]  Trond Kvamsdal,et al.  A Comprehensive Simulation Methodology for Fluid-structure Interaction of Offshore Wind Turbines , 2014 .

[47]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[48]  Frédéric Gibou,et al.  Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions , 2012, J. Comput. Phys..

[49]  Dimitrios Pavlidis,et al.  Compressive advection and multi‐component methods for interface‐capturing , 2016 .

[50]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[51]  Christopher C. Pain,et al.  Coupled FEMDEM/Fluids for coastal engineers with special reference to armour stability and breakage , 2009 .

[52]  Nhan Phan-Thien,et al.  Viscoelastic mobility problem of a system of particles , 2002 .

[53]  Christopher C. Pain,et al.  COUPLED FLUIDITY/Y3D TECHNOLOGY AND SIMULATION TOOLS FOR NUMERICAL BREAKWATER MODELLING , 2012 .

[54]  Wing Kam Liu,et al.  The immersed/fictitious element method for fluid–structure interaction: Volumetric consistency, compressibility and thin members , 2008 .

[55]  Boyce E. Griffith,et al.  An adaptive, formally second order accurate version of the immersed boundary method , 2007, J. Comput. Phys..

[56]  Charles S. Peskin,et al.  Stability and Instability in the Computation of Flows with Moving Immersed Boundaries: A Comparison of Three Methods , 1992, SIAM J. Sci. Comput..