Impact of Particle Size on the Non-Equilibrium Phase Transition of Lithium-Inserted Anatase TiO2
暂无分享,去创建一个
Marnix Wagemaker | Fokko M. Mulder | M. Wagemaker | F. M. Mulder | Kun Shen | Hao Chen | Frits Klaver | Kun Shen | Hao Chen | Frits Klaver | F. Mulder
[1] Min Gyu Kim,et al. Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries , 2009 .
[2] T. Ohzuku,et al. Electrochemistry of anatase titanium dioxide in lithium nonaqueous cells , 1985 .
[3] Takashi Ida,et al. Isolation of Solid Solution Phases in Size‐Controlled LixFePO4 at Room Temperature , 2009 .
[4] M. Wagemaker,et al. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion. , 2012, ACS nano.
[5] T. Jacobsen,et al. Lithium insertion in different TiO2 modifications , 1988 .
[6] P. Bruce,et al. Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.
[7] M. Wohlfahrt‐Mehrens,et al. TiO2 anatase nanoparticle networks: synthesis, structure, and electrochemical performance. , 2011, Small.
[8] P. Bruce,et al. Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.
[9] J. Tarascon,et al. Electrochemical lithium reactivity with nanotextured anatase-type TiO2 , 2005 .
[10] K. I. Gnanasekar,et al. Nanocrystalline TiO2 (anatase) for Li-ion batteries , 2006 .
[11] Brian H. Toby,et al. EXPGUI, a graphical user interface for GSAS , 2001 .
[12] D. Murphy,et al. Ternary LixTiO2 phases from insertion reactions , 1983 .
[13] M. Wagemaker,et al. Two phase morphology limits lithium diffusion in TiO(2)(anatase): a (7)Li MAS NMR study. , 2001, Journal of the American Chemical Society.
[14] M. Wagemaker,et al. Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte. , 2011, Chemistry.
[15] L. Kavan,et al. Nanocrystalline TiO2 (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties , 1996 .
[16] M. Wagemaker,et al. Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.
[17] Daniel A. Cogswell,et al. Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.
[18] Joachim Maier,et al. Thermodynamics of electrochemical lithium storage. , 2013, Angewandte Chemie.
[19] G. Kearley,et al. The influence of size on phase morphology and Li-ion mobility in nanosized lithiated anatase TiO2. , 2007, Chemistry.
[20] D. Murphy,et al. The crystal structures of the lithium-inserted metal oxides Li0.5TiO2 anatase, LiTi2O4 spinel, and Li2Ti2O4 , 1984 .
[21] Dane Morgan,et al. Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .
[22] M. Wagemaker,et al. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase , 2002, Nature.
[23] N. Sharma,et al. Direct evidence of concurrent solid-solution and two-phase reactions and the nonequilibrium structural evolution of LiFePO4. , 2012, Journal of the American Chemical Society.
[24] M. Wagemaker,et al. Atomic and Electronic Bulk versus Surface Structure: Lithium Intercalation in Anatase TiO2 , 2004 .
[25] Marnix Wagemaker,et al. Dynamic solubility limits in nanosized olivine LiFePO4. , 2011, Journal of the American Chemical Society.
[26] D. Kang,et al. Design and evaluation of novel Zn doped mesoporous TiO2 based anode material for advanced lithium ion batteries , 2012 .
[27] R. J. Neat,et al. Performance of titanium dioxide-based cathodes in a lithium polymer electrolyte cell , 1992 .
[28] Daniel A. Cogswell,et al. Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.
[29] J. Maier,et al. Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.
[30] Rahul Malik,et al. Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.
[31] J. Jamnik,et al. Nanocrystallinity effects in lithium battery materials , 2003 .
[32] A. Goossens,et al. In Situ X‐Ray Diffraction of Lithium Intercalation in Nanostructured and Thin Film Anatase TiO2 , 1999 .
[33] Damian Burch,et al. Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. , 2009, Nano letters.
[34] Anton Van der Ven,et al. Kinetics of Anatase Electrodes: The Role of Ordering, Anisotropy, and Shape Memory Effects , 2012 .
[35] M. Wagemaker,et al. Quasi-in-situ reflection mode XANES at the Ti K-edge of lithium intercalated TiO2 rutile and anatase , 2003 .
[36] S. Ramakrishna,et al. Structural and Electrical Properties of Nb‐Doped Anatase TiO2 Nanowires by Electrospinning , 2010 .
[37] B. Scrosati,et al. Anatase as a cathode material in lithium—organic electrolyte rechargeable batteries , 1981 .
[38] Masao Yonemura,et al. Room-temperature miscibility gap in LixFePO4 , 2006, Nature materials.
[39] M. Wagemaker,et al. The electronic structure and ionic diffusion of nanoscale LiTiO2 anatase. , 2009, Physical chemistry chemical physics : PCCP.
[40] M. Wagemaker,et al. Proton positions in spinel H0:9Li0:1½Li0:33Ti1:67 O4; an ion-exchanged spinel Li1½Li0:33Ti1:67 O4 , 2004 .
[41] Deborah J. Jones,et al. Nb-Doped TiO2 Nanofibers for Lithium Ion Batteries , 2013 .
[42] Marnix Wagemaker,et al. Effect of Surface Energies and Nanoparticle Size Distribution on Open Circuit Voltage of Li-Electrodes , 2009 .
[43] G. Kearley,et al. Multiple Li positions inside oxygen octahedra in lithiated TiO2 anatase. , 2003, Journal of the American Chemical Society.
[44] J. Nowotny,et al. Electrical properties of niobium-doped titanium dioxide. 1. Defect disorder. , 2006, The journal of physical chemistry. B.