Impact of Particle Size on the Non-Equilibrium Phase Transition of Lithium-Inserted Anatase TiO2

The phase transformation behavior in Li-ion battery electrodes is critical for the electrode kinetics and cycle life. Here we reveal unexpected particle size-dependent phase transformation behavior in anatase TiO2 by in situ X-ray diffraction. The equilibrium voltage measured by the galvanostatic intermittent titration technique decreases progressively with a decrease in particle size, which can attributed to the difference in the surface energy of the pristine and lithiated phases. On the basis of the evolution of the domain size and phase fraction of the two phases, we conclude that the first-order phase transition proceeds by continuous nucleation upon lithium insertion. For all particle sizes, the phase boundary is found to migrate under nonequilibrium conditions even under very slow (dis)charge conditions, as reflected by a distinct deviation from the Li solubility limit during the phase transformation. Remarkably, the degree of nonequilibrium increases with a decrease in particle size, which is rati...

[1]  Min Gyu Kim,et al.  Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries , 2009 .

[2]  T. Ohzuku,et al.  Electrochemistry of anatase titanium dioxide in lithium nonaqueous cells , 1985 .

[3]  Takashi Ida,et al.  Isolation of Solid Solution Phases in Size‐Controlled LixFePO4 at Room Temperature , 2009 .

[4]  M. Wagemaker,et al.  Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion. , 2012, ACS nano.

[5]  T. Jacobsen,et al.  Lithium insertion in different TiO2 modifications , 1988 .

[6]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[7]  M. Wohlfahrt‐Mehrens,et al.  TiO2 anatase nanoparticle networks: synthesis, structure, and electrochemical performance. , 2011, Small.

[8]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[9]  J. Tarascon,et al.  Electrochemical lithium reactivity with nanotextured anatase-type TiO2 , 2005 .

[10]  K. I. Gnanasekar,et al.  Nanocrystalline TiO2 (anatase) for Li-ion batteries , 2006 .

[11]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[12]  D. Murphy,et al.  Ternary LixTiO2 phases from insertion reactions , 1983 .

[13]  M. Wagemaker,et al.  Two phase morphology limits lithium diffusion in TiO(2)(anatase): a (7)Li MAS NMR study. , 2001, Journal of the American Chemical Society.

[14]  M. Wagemaker,et al.  Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte. , 2011, Chemistry.

[15]  L. Kavan,et al.  Nanocrystalline TiO2 (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties , 1996 .

[16]  M. Wagemaker,et al.  Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.

[17]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[18]  Joachim Maier,et al.  Thermodynamics of electrochemical lithium storage. , 2013, Angewandte Chemie.

[19]  G. Kearley,et al.  The influence of size on phase morphology and Li-ion mobility in nanosized lithiated anatase TiO2. , 2007, Chemistry.

[20]  D. Murphy,et al.  The crystal structures of the lithium-inserted metal oxides Li0.5TiO2 anatase, LiTi2O4 spinel, and Li2Ti2O4 , 1984 .

[21]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[22]  M. Wagemaker,et al.  Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase , 2002, Nature.

[23]  N. Sharma,et al.  Direct evidence of concurrent solid-solution and two-phase reactions and the nonequilibrium structural evolution of LiFePO4. , 2012, Journal of the American Chemical Society.

[24]  M. Wagemaker,et al.  Atomic and Electronic Bulk versus Surface Structure: Lithium Intercalation in Anatase TiO2 , 2004 .

[25]  Marnix Wagemaker,et al.  Dynamic solubility limits in nanosized olivine LiFePO4. , 2011, Journal of the American Chemical Society.

[26]  D. Kang,et al.  Design and evaluation of novel Zn doped mesoporous TiO2 based anode material for advanced lithium ion batteries , 2012 .

[27]  R. J. Neat,et al.  Performance of titanium dioxide-based cathodes in a lithium polymer electrolyte cell , 1992 .

[28]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[29]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[30]  Rahul Malik,et al.  Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.

[31]  J. Jamnik,et al.  Nanocrystallinity effects in lithium battery materials , 2003 .

[32]  A. Goossens,et al.  In Situ X‐Ray Diffraction of Lithium Intercalation in Nanostructured and Thin Film Anatase TiO2 , 1999 .

[33]  Damian Burch,et al.  Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. , 2009, Nano letters.

[34]  Anton Van der Ven,et al.  Kinetics of Anatase Electrodes: The Role of Ordering, Anisotropy, and Shape Memory Effects , 2012 .

[35]  M. Wagemaker,et al.  Quasi-in-situ reflection mode XANES at the Ti K-edge of lithium intercalated TiO2 rutile and anatase , 2003 .

[36]  S. Ramakrishna,et al.  Structural and Electrical Properties of Nb‐Doped Anatase TiO2 Nanowires by Electrospinning , 2010 .

[37]  B. Scrosati,et al.  Anatase as a cathode material in lithium—organic electrolyte rechargeable batteries , 1981 .

[38]  Masao Yonemura,et al.  Room-temperature miscibility gap in LixFePO4 , 2006, Nature materials.

[39]  M. Wagemaker,et al.  The electronic structure and ionic diffusion of nanoscale LiTiO2 anatase. , 2009, Physical chemistry chemical physics : PCCP.

[40]  M. Wagemaker,et al.  Proton positions in spinel H0:9Li0:1½Li0:33Ti1:67 O4; an ion-exchanged spinel Li1½Li0:33Ti1:67 O4 , 2004 .

[41]  Deborah J. Jones,et al.  Nb-Doped TiO2 Nanofibers for Lithium Ion Batteries , 2013 .

[42]  Marnix Wagemaker,et al.  Effect of Surface Energies and Nanoparticle Size Distribution on Open Circuit Voltage of Li-Electrodes , 2009 .

[43]  G. Kearley,et al.  Multiple Li positions inside oxygen octahedra in lithiated TiO2 anatase. , 2003, Journal of the American Chemical Society.

[44]  J. Nowotny,et al.  Electrical properties of niobium-doped titanium dioxide. 1. Defect disorder. , 2006, The journal of physical chemistry. B.