Theory of Molecular Liquids

[1]  Fumio Hirata,et al.  A hybrid approach for the solvent effect on the electronic structure of a solute based on the RISM and Hartree-Fock equations , 1993 .

[2]  Orlando Tapia,et al.  Solvent effects and chemical reactivity , 2002 .

[3]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[4]  M. B. Pinto,et al.  Optimized δ expansion for relativistic nuclear models , 1997, nucl-th/9709049.

[5]  J. Prausnitz,et al.  Perturbed hard chain theory for fluid mixtures: Thermodynamic properties for mixtures in natural gas and petroleum technology , 1978 .

[6]  M. Tachiya Relation between the electron-transfer rate and the free energy change of reaction , 1989 .

[7]  Peter T. Cummings,et al.  Molecular simulation of water along the liquid–vapor coexistence curve from 25 °C to the critical point , 1990 .

[8]  L. Paquette,et al.  Claisen rearrangement of 6-alkenyl-2-methylenetetrahydropyrans. A new approach to annulated 4-cyclooctenones and a stereospecific synthesis of precapnelladiene , 1984 .

[9]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[10]  H. Eyring,et al.  Statistical mechanics and dynamics , 1964 .

[11]  P. Rossky,et al.  Evaluation of Reaction Free Energy Surfaces in Aqueous Solution: An Integral Equation Approach , 1984 .

[12]  F. Hirata,et al.  Solvent effect on the nuclear magnetic shielding: ab initio study by the combined reference interaction site model and electronic structure theories , 2001 .

[13]  W. L. Jorgensen,et al.  An improved intermolecular potential function for simulations of liquid hydrogen fluoride , 1984 .

[14]  Fumio Hirata,et al.  Analytical energy gradient for the reference interaction site model multiconfigurational self‐consistent‐field method: Application to 1,2‐difluoroethylene in aqueous solution , 1996 .

[15]  David Chandler,et al.  Free energy functions in the extended RISM approximation , 1985 .

[16]  H. Friedman,et al.  Series solution of the HNC and PY equations: The simple chain recursion way , 1978 .

[17]  David Chandler,et al.  Optimized Cluster Expansions for Classical Fluids. II. Theory of Molecular Liquids , 1972 .

[18]  Fumio Hirata,et al.  TOWARDS A MOLECULAR THEORY FOR THE VAN DER WAALS–MAXWELL DESCRIPTION OF FLUID PHASE TRANSITIONS , 2002 .

[19]  F. Hirata,et al.  Solvation dynamics of benzonitrile excited state in polar solvents: A time-dependent reference interaction site model self-consistent field approach , 1999 .

[20]  F. Hirata,et al.  Interaction-site-model description of collective excitations in liquid water. I: Theoretical study , 1999 .

[21]  Ashcroft,et al.  Critical behavior of the hypernetted-chain equation. , 1987, Physical review. A, General physics.

[22]  Fumio Hirata,et al.  Chemical Processes in Solution Studied by an Integral Equation Theory of Molecular Liquids. , 1998 .

[23]  Rudolph A. Marcus,et al.  On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I , 1956 .

[24]  B. Smit,et al.  Molecular simulations of the vapour-liquid coexistence curve of methanol , 1995 .

[25]  A. Schlijper,et al.  Singularities in the consistent hypernetted chain approximation , 1994 .

[26]  Wilfred F. van Gunsteren,et al.  A Force Field for Liquid Dimethyl Sulfoxide and Physical Properties of Liquid Dimethyl Sulfoxide Calculated Using Molecular Dynamics Simulation , 1995 .

[27]  Tohru Morita,et al.  A New Approach to the Theory of Classical Fluids. I , 1960 .

[28]  A. Harvey Phase equilibria and critical lines in model water/salt mixtures , 1991 .

[29]  S. Lvov,et al.  A global phase diagram for the ion-dipole model in the mean spherical approximation , 1998 .

[30]  H. Friedman,et al.  Integral Equation Methods in the Computation of Equilibrium Properties of Ionic Solutions , 1968 .

[31]  Ashcroft,et al.  Critical behavior of modified hypernetted-chain equations. II. Nonuniversal quantities. , 1987, Physical review. A, General physics.

[32]  Fumio Hirata,et al.  Theoretical study for water structure at highly ordered surface: Effect of surface structure , 1998 .

[33]  Effects of Solvent on the Conformation and the Collective Motions of a Protein. 3. Free Energy Analysis by the Extended RISM Theory , 1993 .

[34]  R. Balescu Equilibrium and Nonequilibrium Statistical Mechanics , 1991 .

[35]  B. Honig,et al.  Calculation of electrostatic potentials in an enzyme active site , 1987, Nature.

[36]  F. Hirata,et al.  Ion Hydration: Thermodynamic and Structural Analysis with an Integral Equation Theory of Liquids , 1997 .

[37]  I. Prigogine,et al.  The molecular theory of solutions , 1957 .

[38]  F. Hirata,et al.  Solvent Effects on a Diels−Alder Reaction in Supercritical Water: RISM-SCF Study , 2000 .

[39]  K. D. Collins Sticky ions in biological systems. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Fumio Hirata,et al.  Structure of tert-Butyl Alcohol−Water Mixtures Studied by the RISM Theory , 2002 .

[41]  Fumio Hirata,et al.  Self-consistent description of a metal–water interface by the Kohn–Sham density functional theory and the three-dimensional reference interaction site model , 1999 .

[42]  A. Allnatt Integral equations in ionic solution theory , 1964 .

[43]  S. Sandler,et al.  The generalized van der Waals partition function. II. Application to the square-well fluid , 1985 .

[44]  Wolfgang Wagner,et al.  A Fundamental Equation for Water Covering the Range from the Melting Line to 1273 K at Pressures up to 25 000 MPa , 1989 .

[45]  K. Arakawa,et al.  The Structure Theory of Water. III. The Order-Disorder Theory , 1970 .

[46]  S. Ten-no,et al.  Ab initio study of water: self-consistent determination of electronic structure and liquid state properties , 1997 .

[47]  B. Montgomery Pettitt,et al.  Integral equation predictions of liquid state structure for waterlike intermolecular potentials , 1982 .

[48]  F. Hirata Interaction‐site representation of the Smoluchowski–Vlasov equation: The space–time correlation functions in a molecular liquid , 1992 .

[49]  D. Ives,et al.  Structure of aqueous electrolyte solutions and the hydration of ions , 1965 .

[50]  H. C. Longuet-Higgins,et al.  A rigid sphere model for the melting of argon , 1964 .

[51]  Fumio Hirata,et al.  An extended rism equation for molecular polar fluids , 1981 .

[52]  D. Powell,et al.  ASYMMETRIC MEMORY AT LABILE, STEREOGENIC BORON : ENOLATE ALKYLATION OF OXAZABOROLIDINONES , 1999 .

[53]  S. Sandler,et al.  Local composition model for chainlike molecules: A new simplified version of the perturbed hard chain theory , 1986 .

[54]  Fumio Hirata,et al.  First-principles realization of a van der Waals–Maxwell theory for water , 2001 .

[55]  J. Lebowitz,et al.  Mean Spherical Model Integral Equation for Charged Hard Spheres I. Method of Solution , 1972 .

[56]  W. L. Jorgensen Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water , 2002 .

[57]  Henry S. Frank,et al.  Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure , 1957 .

[58]  T. Ichiye,et al.  Accurate integral equation theory for the central force model of liquid water and ionic solutions , 1988 .

[59]  A. Ben-Naim Application of an Approximate Percus-Yevick Equation for Liquid Water , 1970 .

[60]  J. Prausnitz,et al.  Perturbed hard-chain theory: An equation of state for fluids containing small or large molecules , 1975 .

[61]  R. Levy,et al.  Viewing the born model for ion hydration through a microscope , 1988 .

[62]  J. D. Bernal,et al.  A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions , 1933 .

[63]  D. Blankschtein,et al.  Application of integral equation theories to predict the structure, thermodynamics, and phase-behavior of water , 1995 .

[64]  L. L. Lee Hard sphere properties obtained from a consistent closure , 1999 .

[65]  Fumio Hirata,et al.  Ab initio study of water. II. Liquid structure, electronic and thermodynamic properties over a wide range of temperature and density , 1999 .

[66]  Masahiro Kinoshita,et al.  Theoretical study for partial molar volume of amino acids in aqueous solution: Implication of ideal fluctuation volume , 2000 .

[67]  Benoît Roux,et al.  Solvation thermodynamics: An approach from analytic temperature derivatives , 1990 .

[68]  P. Rossky,et al.  Generalized recursive solutions to Ornstein-Zernike integral equations , 1980 .

[69]  N. Mataga,et al.  Shapes of the electron-transfer rate vs energy gap relations in polar solutions , 1989 .

[70]  J. Mayer The Theory of Ionic Solutions , 1950 .

[71]  R. Levy,et al.  A new RISM integral equation for solvated polymers , 1987 .

[72]  F. Hirata,et al.  Dynamics of ions in liquid water: An interaction-site-model description , 1999 .

[73]  O. Samoilov A new approach to the study of hydration of ions in aqueous solutions , 1957 .

[74]  A. Narten,et al.  Neutron diffraction study of light and heavy water mixtures at 25 °C , 1982 .

[75]  M. Wertheim,et al.  Analytic Solution of the Percus-Yevick Equation , 1964 .

[76]  K. E. Starling,et al.  Intermolecular repulsions and the equation of state for fluids , 1972 .

[77]  G. Zerah,et al.  Self‐consistent integral equations for fluid pair distribution functions: Another attempt , 1986 .

[78]  G. Patey,et al.  Theoretical results for aqueous electrolytes. Ion–ion potentials of mean force and the solute‐dependent dielectric constant , 1983 .

[79]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid alcohols , 1986 .

[80]  Harold A. Scheraga,et al.  Structure of Water and Hydrophobic Bonding in Proteins. I. A Model for the Thermodynamic Properties of Liquid Water , 1962 .

[81]  L. Reatto,et al.  A crossover integral equation for the structure of simple liquids , 1984 .

[82]  Harold L. Friedman A Course in Statistical Mechanics , 1985 .

[83]  K. Gubbins,et al.  Thermodynamics of polyatomic fluid mixtures—I theory , 1978 .

[84]  J. Arons,et al.  Global phase behavior based on the simplified‐perturbed hard‐chain equation of state , 1995 .

[85]  Hideki Tanaka,et al.  Fluctuation, relaxations, and hydration in liquid water. Hydrogen-bond rearrangement dynamics , 1993 .

[86]  Fumio Hirata,et al.  RISM-SCF study of the free-energy profile of the Menshutkin-type reaction NH3+CH3Cl→NH3CH3++Cl− in aqueous solution , 1999 .

[87]  Walter Kauzmann,et al.  The Structure and Properties of Water , 1969 .

[88]  Benoît Roux,et al.  Molecular basis for the Born model of ion solvation , 1990 .

[89]  Yuko Okamoto,et al.  First-Principle Determination of Peptide Conformations in Solvents: Combination of Monte Carlo Simulated Annealing and RISM Theory , 1998 .

[90]  F. Hirata,et al.  Solute-structure dependence of solvation dynamics studied by reference interaction-site model theory , 2003 .

[91]  O. Redlich,et al.  On the thermodynamics of solutions; an equation of state; fugacities of gaseous solutions. , 1949, Chemical reviews.

[92]  M. Trebble,et al.  Development of a new empirical non-cubic equation of state , 1999 .

[93]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[94]  H. Friedman,et al.  Surrogate Hamiltonian description of solvation dynamics. Site number density and polarization charge density formulations , 1995 .

[95]  R. Scott,et al.  Static properties of solutions. Van der Waals and related models for hydrocarbon mixtures , 1970 .

[96]  Felix Franks,et al.  Water:A Comprehensive Treatise , 1972 .

[97]  M. Born Volumen und Hydratationswärme der Ionen , 1920 .

[98]  D. Visco,et al.  A comparison of molecular-based models to determine vapor–liquid phase coexistence in hydrogen fluoride , 1999 .