Where is the root of the universal tree of life?

The currently accepted universal tree of life based on molecular phylogenies is characterised by a prokaryotic root and the sisterhood of archaea and eukaryotes. The recent discovery that each domain (bacteria, archaea, and eucarya) represents a mosaic of the two others in terms of its gene content has suggested various alternatives in which eukaryotes were derived from the merging of bacteria and archaea. In all these scenarios, life evolved from simple prokaryotes to complex eukaryotes. We argue here that these models are biased by overconfidence in molecular phylogenies and prejudices regarding the primitive nature of prokaryotes. We propose instead a universal tree of life with the root in the eukaryotic branch and suggest that many prokaryotic features of the information processing mechanisms originated by simplification through gene loss and non-orthologous displacement.

[1]  Russell F. Doolittle,et al.  Microbial genomes opened up , 1998, Nature.

[2]  A. Nicolas,et al.  An atypical topoisomerase II from archaea with implications for meiotic recombination , 1997, Nature.

[3]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[4]  T. Cavalier-smith,et al.  Eukaryotes with no mitochondria , 1987, Nature.

[5]  J. R. Brown,et al.  A chimeric origin for eukaryotes re-examined. , 1996, Trends in biochemical sciences.

[6]  D Graur,et al.  Towards a molecular resolution of the ordinal phylogeny of the eutherian mammals , 1993, FEBS letters.

[7]  W. Doolittle You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. , 1998, Trends in genetics : TIG.

[8]  W. Doolittle Fun with genealogy. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Carlile Prokaryotes and eukaryotes: strategies and successes , 1982 .

[10]  T. Flegel,et al.  A proposal for typical eukaryotic meiosis in microsporidians , 1995 .

[11]  P Forterre,et al.  The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea. , 1996, FEMS microbiology reviews.

[12]  H. Philippe,et al.  Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. , 1999, Molecular biology and evolution.

[13]  S. Osawa,et al.  Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J A Lake,et al.  Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. , 1992, Science.

[15]  W. Zillig Eukaryotic traits in Archaebacteria. Could the eukaryotic cytoplasm have arisen from archaebacterial origin? , 1987, Annals of the New York Academy of Sciences.

[16]  D. Penny,et al.  The Path from the RNA World , 1998, Journal of Molecular Evolution.

[17]  Radhey S. Gupta What are archaebacteria: life's third domain or monoderm prokaryotes related to Gram‐positive bacteria? A new proposal for the classification of prokaryotic organisms , 1998, Molecular microbiology.

[18]  M. Hasegawa,et al.  Secondary absence of mitochondria in Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  P. Forterre,et al.  Archaea: what can we learn from their sequences? , 1997, Current opinion in genetics & development.

[20]  H. Philippe Rodent monophyly: pitfalls of molecular phylogenies. , 1997, Journal of molecular evolution.

[21]  James R. Brown,et al.  Archaea and the prokaryote-to-eukaryote transition. , 1997, Microbiology and molecular biology reviews : MMBR.

[22]  Purificación López-García,et al.  Symbiosis Between Methanogenic Archaea and δ-Proteobacteria as the Origin of Eukaryotes: The Syntrophic Hypothesis , 1998, Journal of Molecular Evolution.

[23]  J A Lake,et al.  Was the nucleus the first endosymbiont? , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J D Palmer,et al.  The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Lake Prokaryotes and archaebacteria are not monophyletic: rate invariant analysis of rRNA genes indicates that eukaryotes and eocytes form a monophyletic taxon. , 1987, Cold Spring Harbor Symposia on Quantitative Biology.

[26]  P. Forterre,et al.  The nature of the last universal ancestor and the root of the tree of life, still open questions. , 1992, Bio Systems.

[27]  H. Philippe,et al.  Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae. , 1997, Molecular and biochemical parasitology.

[28]  Ernst Haeckel Generelle morphologie der organismen. Allgemeine grundzüge der organischen formen-wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte descendenztheorie, von Ernst Haeckel , 1866 .

[29]  P. Bork,et al.  Non-orthologous gene displacement. , 1996, Trends in genetics : TIG.

[30]  R. Cedergren,et al.  On the Evolution of the Single-Subunit RNA Polymerases , 1997, Journal of Molecular Evolution.

[31]  A. Wilson,et al.  Generation time and genomic evolution in primates. , 1973, Science.

[32]  S. Katiyar,et al.  Phylogenetic analysis of beta-tubulin sequences from amitochondrial protozoa. , 1996, Molecular phylogenetics and evolution.

[33]  D. Reanney On the origin of prokaryotes. , 1974, Journal of theoretical biology.

[34]  Herrmann,et al.  Gene transfer from organelles to the nucleus: how much, what happens, and Why? , 1998, Plant Physiology.

[35]  Gary J Olsen,et al.  Archaeal Genomics: An Overview , 1997, Cell.

[36]  W. Zillig Eukaryotic Traits in Archaebacteria , 1987 .

[37]  H. Philippe,et al.  Critical Analysis of Eukaryotic Phylogeny: A Case Study Based on the HSP70 Family , 1999, The Journal of eukaryotic microbiology.

[38]  Mitchell L Sogin Early evolution and the origin of eukaryotes , 1992, Current Biology.

[39]  W. Doolittle,et al.  Archaea and the Origin(s) of DNA Replication Proteins , 1997, Cell.

[40]  B. Lang,et al.  Transcription in chloroplasts and mitochondria: a tale of two polymerases. , 1998, Trends in Microbiology.

[41]  W. Ford Doolittle,et al.  Genes in pieces: were they ever together? , 1978, Nature.

[42]  J. Lett,et al.  Radiation hazards in space put in perspective , 1988, Nature.

[43]  J. Lake,et al.  Optimally recovering rate variation information from genomes and sequences: pattern filtering. , 1998, Molecular biology and evolution.

[44]  C. Woese,et al.  Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes , 1987, Nature.

[45]  M. Hasegawa,et al.  Complete nucleotide sequences of the genes encoding translation elongation factors 1 alpha and 2 from a microsporidian parasite, Glugea plecoglossi: implications for the deepest branching of eukaryotes. , 1996, Journal of biochemistry.

[46]  N. Kyrpides,et al.  Universally conserved translation initiation factors. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[47]  W. Martin,et al.  The hydrogen hypothesis for the first eukaryote , 1998, Nature.

[48]  J. Darnell Implications of RNA-RNA splicing in evolution of eukaryotic cells. , 1978, Science.

[49]  T. Meyer,et al.  Evidence against use of bacterial amino acid sequence data for construction of all-inclusive phylogenetic trees. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Gary Natriello FOCUS , 1985, Digital-Age Innovation in Higher Education.

[51]  Michael Y. Galperin,et al.  Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea , 1997, Molecular microbiology.

[52]  P. Forterre,et al.  The Rooting of the Universal Tree of Life Is Not Reliable , 1999, Journal of Molecular Evolution.

[53]  P. Forterre Thermoreduction, a hypothesis for the origin of prokaryotes. , 1995, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[54]  Horizontal transfers confuse the prokaryotic phylogeny based on the HSP70 protein family , 1999, Molecular microbiology.

[55]  N. Kyrpides,et al.  Archaeal translation initiation revisited: the initiation factor 2 and eukaryotic initiation factor 2B alpha-beta-delta subunit families. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[56]  H. Philippe,et al.  New insights into the phylogeny of eukaryotes based on ciliate Hsp70 sequences. , 1998, Molecular biology and evolution.

[57]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[58]  R. Fleischmann,et al.  Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii , 1996, Science.

[59]  S. Katiyar,et al.  Phylogenetic Analysis of β-Tubulin Sequences from Amitochondrial Protozoa , 1996 .

[60]  H. Philippe,et al.  How good are deep phylogenetic trees? , 1998, Current opinion in genetics & development.

[61]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[62]  M. Müller What are the microsporidia? , 1997, Parasitology today.

[63]  W. Doolittle,et al.  Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[64]  H. Phillipe The molecular phylogeny of eukaryota: solid facts and uncertainties , 1998 .

[65]  W. Doolittle,et al.  Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. , 1996, Molecular biology and evolution.

[66]  E. Canning,et al.  A mitochondrial Hsp70 orthologue in Vairimorpha necatrix: molecular evidence that microsporidia once contained mitochondria , 1997, Current Biology.

[67]  H Philippe,et al.  An evaluation of elongation factor 1 alpha as a phylogenetic marker for eukaryotes. , 1999, Molecular biology and evolution.

[68]  G. Olsen,et al.  Archaebacterial phylogeny: perspectives on the urkingdoms. , 1986, Systematic and applied microbiology.

[69]  Ernst Haeckel,et al.  Generelle Morphologie der Organismen: Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformierte Descendenz-Theorie. Band 1: Allgemeine Anatomie. Band 2: Allgemeine Entwicklungsgeschichte , 1866 .

[70]  C. Woese The universal ancestor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[71]  C. Woese,et al.  Eukaryotic ribosomes that lack a 5.8S RNA , 1986, Nature.

[72]  Hervé Philippe,et al.  The Root of the Tree of Life in the Light of the Covarion Model , 1999, Journal of Molecular Evolution.

[73]  J. Lake,et al.  Genomic evidence for two functionally distinct gene classes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[74]  E Pennisi,et al.  Genome Data Shake Tree of Life , 1998, Science.

[75]  M. O. Dayhoff,et al.  Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts. , 1978, Science.

[76]  N Okada,et al.  Phylogenetic position of guinea pigs revisited. , 1997, Molecular biology and evolution.

[77]  Masasuke Yoshida,et al.  Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[78]  G. B. Golding,et al.  The origin of the eukaryotic cell. , 1996, Trends in biochemical sciences.