Structure and reversible pyran formation in molybdenum pyranopterin dithiolene models of the molybdenum cofactor.

The syntheses and X-ray structures of two molybdenum pyranopterin dithiolene complexes in biologically relevant Mo(4+) and Mo(5+) states are reported. Crystallography reveals that these complexes possess a pyran ring formed through a spontaneous cyclization reaction of a dithiolene side-chain hydroxyl group at a C═N bond of the pterin. NMR data on the Mo(4+) complex suggest that a reversible pyran ring cyclization occurs in solution. These results provide experimental evidence that the pyranopterin dithiolene ligand in molybdenum and tungsten enzymes could participate in catalysis through dynamic processes modulated by the protein.

[1]  M. Solomonson,et al.  Pyranopterin conformation defines the function of molybdenum and tungsten enzymes , 2012, Proceedings of the National Academy of Sciences.

[2]  S. Burgmayer,et al.  Study of molybdenum(4+) quinoxalyldithiolenes as models for the noninnocent pyranopterin in the molybdenum cofactor. , 2011, Inorganic chemistry.

[3]  H. Dobbek Structural aspects of mononuclear Mo/W-enzymes , 2011 .

[4]  A. Walburger,et al.  Molybdenum enzymes in bacteria and their maturation , 2011 .

[5]  R. Mendel,et al.  Molybdenum cofactor biosynthesis in plants and humans , 2011 .

[6]  K. Rajagopalan,et al.  The History of the Discovery of the Molybdenum Cofactor and Novel Aspects of its Biosynthesis in Bacteria. , 2011, Coordination chemistry reviews.

[7]  V. Gladyshev,et al.  Comparative Genomics and Evolution of Molybdenum Utilization. , 2011, Coordination chemistry reviews.

[8]  F. Bittner,et al.  Molybdenum enzymes in higher organisms. , 2011, Coordination chemistry reviews.

[9]  S. Burgmayer,et al.  Pterin chemistry and its relationship to the molybdenum cofactor. , 2011, Coordination chemistry reviews.

[10]  S. Burgmayer,et al.  Noninnocent dithiolene ligands: a new oxomolybdenum complex possessing a donor-acceptor dithiolene ligand. , 2010, Journal of the American Chemical Society.

[11]  Á. Somogyi,et al.  Synthesis, characterization, and spectroscopy of model molybdopterin complexes. , 2007, Journal of inorganic biochemistry.

[12]  G. Schulz,et al.  Crystal structure of ethylbenzene dehydrogenase from Aromatoleum aromaticum. , 2006, Structure.

[13]  Frank Inscore,et al.  Understanding the origin of metal-sulfur vibrations in an oxo-molybdenum dithiolene complex: relevance to sulfite oxidase. , 2006, Inorganic Chemistry.

[14]  D. Richardson,et al.  Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes. , 2004, Structure.

[15]  Sharon J. Nieter Burgmayer,et al.  Redox reactions of the pyranopterin system of the molybdenum cofactor , 2004, JBIC Journal of Biological Inorganic Chemistry.

[16]  D. Lichtenberger,et al.  Investigation of metal–dithiolate fold angle effects: Implications for molybdenum and tungsten enzymes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Daniel Lim,et al.  Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A , 2003, Nature Structural Biology.

[18]  C. Garner,et al.  The coordination chemistry and function of the molybdenum centres of the oxomolybdoenzymes , 1997, JBIC Journal of Biological Inorganic Chemistry.

[19]  Robert Huber,et al.  Crystal Structure of the Xanthine Oxidase-Related Aldehyde Oxido-Reductase from D. gigas , 1995, Science.

[20]  D. Rees,et al.  Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase , 1995, Science.

[21]  K. Rajagopalan Novel aspects of the biochemistry of the molybdenum cofactor. , 1991, Advances in enzymology and related areas of molecular biology.

[22]  W. Pfleiderer,et al.  Pteridine. Teil XCIV. Synthese und Eigenschaften von 5,6‐Dihydro‐6‐(1,2,3‐trihydroxypropyl)pteridinen: Kovalente intramolekulare Addukte , 1990 .