iBOAT: Isolation-Based Online Anomalous Trajectory Detection

Trajectories obtained from Global Position System (GPS)-enabled taxis grant us an opportunity not only to extract meaningful statistics, dynamics, and behaviors about certain urban road users but also to monitor adverse and/or malicious events. In this paper, we focus on the problem of detecting anomalous routes by comparing the latter against time-dependent historically “normal” routes. We propose an online method that is able to detect anomalous trajectories “on-the-fly” and to identify which parts of the trajectory are responsible for its anomalousness. Furthermore, we perform an in-depth analysis on around 43 800 anomalous trajectories that are detected out from the trajectories of 7600 taxis for a month, revealing that most of the anomalous trips are the result of conscious decisions of greedy taxi drivers to commit fraud. We evaluate our proposed isolation-based online anomalous trajectory (iBOAT) through extensive experiments on large-scale taxi data, and it shows that iBOAT achieves state-of-the-art performance, with a remarkable performance of the area under a curve (AUC) ≥ 0.99.

[1]  Hans-Peter Kriegel,et al.  LOF: identifying density-based local outliers , 2000, SIGMOD '00.

[2]  Bo Hu,et al.  Exploratory calibration of a spatial interaction model using taxi GPS trajectories , 2012, Comput. Environ. Urban Syst..

[3]  A. Pentland,et al.  Life in the network: The coming age of computational social science: Science , 2009 .

[4]  JUSTIN ZOBEL,et al.  Inverted files for text search engines , 2006, CSUR.

[5]  Anind K. Dey,et al.  Navigate like a cabbie: probabilistic reasoning from observed context-aware behavior , 2008, UbiComp.

[6]  Zhaohui Wu,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1 Land-Use Classification Using Taxi GPS Traces , 2022 .

[7]  Hani S. Mahmassani,et al.  Dynamic origin-destination demand estimation using automatic vehicle identification data , 2006, IEEE Transactions on Intelligent Transportation Systems.

[8]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[9]  Robert B. Fisher,et al.  Semi-supervised Learning for Anomalous Trajectory Detection , 2008, BMVC.

[10]  Yizhou Yu,et al.  Anomaly detection in GPS data based on visual analytics , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[11]  Lin Sun,et al.  Hunting or waiting? Discovering passenger-finding strategies from a large-scale real-world taxi dataset , 2011, 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops).

[12]  Heng Tao Shen,et al.  Discovering popular routes from trajectories , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[13]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[14]  Daqing Zhang,et al.  The Emergence of Social and Community Intelligence , 2011, Computer.

[15]  Zhi-Hua Zhou,et al.  iBAT: detecting anomalous taxi trajectories from GPS traces , 2011, UbiComp '11.

[16]  Paolo Frasconi,et al.  Collective Traffic Forecasting , 2010, ECML/PKDD.

[17]  Zengyou He,et al.  Discovering cluster-based local outliers , 2003, Pattern Recognit. Lett..

[18]  Bianca Zadrozny,et al.  Outlier detection by active learning , 2006, KDD '06.

[19]  Carlo Ratti,et al.  Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome , 2011, IEEE Transactions on Intelligent Transportation Systems.

[20]  Xing Xie,et al.  T-drive: driving directions based on taxi trajectories , 2010, GIS '10.

[21]  Jane Yung-jen Hsu,et al.  Context-aware taxi demand hotspots prediction , 2010, Int. J. Bus. Intell. Data Min..

[22]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.

[23]  Fei Tony Liu,et al.  Isolation-Based Anomaly Detection , 2012, TKDD.

[24]  Henry A. Kautz,et al.  Inferring High-Level Behavior from Low-Level Sensors , 2003, UbiComp.

[25]  Lin Sun,et al.  Real-Time Detection of Anomalous Taxi Trajectories from GPS Traces , 2011, MobiQuitous.

[26]  Carlo Ratti,et al.  Taxi-Aware Map: Identifying and Predicting Vacant Taxis in the City , 2010, AmI.

[27]  Jae-Gil Lee,et al.  Trajectory Outlier Detection: A Partition-and-Detect Framework , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[28]  Sangkyum Kim,et al.  ROAM: Rule- and Motif-Based Anomaly Detection in Massive Moving Object Data Sets , 2007, SDM.

[29]  Rajesh Krishna Balan,et al.  Real-time trip information service for a large taxi fleet , 2011, MobiSys '11.

[30]  Eric Horvitz,et al.  Predestination: Where Do You Want to Go Today? , 2007, Computer.

[31]  Vania Bogorny,et al.  A model for enriching trajectories with semantic geographical information , 2007, GIS.

[32]  A. Pentland,et al.  Computational Social Science , 2009, Science.

[33]  Dawei Liu,et al.  Efficient anomaly monitoring over moving object trajectory streams , 2009, KDD.

[34]  Hui Xiong,et al.  Top-Eye: top-k evolving trajectory outlier detection , 2010, CIKM.

[35]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[36]  Xing Xie,et al.  Collaborative Filtering Meets Mobile Recommendation: A User-Centered Approach , 2010, AAAI.

[37]  John Krumm,et al.  Route Prediction from Trip Observations , 2008 .

[38]  Liang Liu,et al.  Uncovering cabdrivers' behavior patterns from their digital traces , 2010, Comput. Environ. Urban Syst..

[39]  Hui Xiong,et al.  A Taxi Driving Fraud Detection System , 2011, 2011 IEEE 11th International Conference on Data Mining.

[40]  Xing Xie,et al.  Urban computing with taxicabs , 2011, UbiComp '11.

[41]  Jae-Gil Lee,et al.  Temporal Outlier Detection in Vehicle Traffic Data , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[42]  Henry A. Kautz,et al.  Learning and inferring transportation routines , 2004, Artif. Intell..