A Parallel Approximation Algorithm for Maximizing Submodular b-Matching

We design new serial and parallel approximation algorithms for computing a maximum weight b-matching in an edge-weighted graph with a submodular objective function. This problem is NP-hard; the new algorithms have approximation ratio 1/3, and are relaxations of the Greedy algorithm that rely only on local information in the graph, making them parallelizable. We have designed and implemented Local Lazy Greedy algorithms for both serial and parallel computers. We have applied the approximate submodular b-matching algorithm to assign tasks to processors in the computation of Fock matrices in quantum chemistry on parallel computers. The assignment seeks to reduce the run time by balancing the computational load on the processors and bounding the number of messages that each processor sends. We show that the new assignment of tasks to processors provides a four fold speedup over the currently used assignment in the NWChemEx software on 8000 processors on the Summit supercomputer at Oak Ridge National Lab.

[1]  Amin Karbasi,et al.  Submodularity in Action: From Machine Learning to Signal Processing Applications , 2020, IEEE Signal Processing Magazine.

[2]  Pradeep Dubey,et al.  Efficient Approximation Algorithms for Weighted b-Matching , 2016, SIAM J. Sci. Comput..

[3]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[4]  William Stafford Noble,et al.  Submodular Generalized Matching for Peptide Identification in Tandem Mass Spectrometry , 2019, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[5]  Daniel Lehmann,et al.  Combinatorial auctions with decreasing marginal utilities , 2001, EC '01.

[6]  Michel Minoux,et al.  Accelerated greedy algorithms for maximizing submodular set functions , 1978 .

[7]  P. Sanders,et al.  A simpler linear time 2 / 3 − ε approximation for maximum weight matching , 2004 .

[8]  William Stafford Noble,et al.  Bipartite matching generalizations for peptide identification in tandem mass spectrometry , 2016, BCB.

[9]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[10]  Sebastiano Vigna,et al.  The webgraph framework I: compression techniques , 2004, WWW '04.

[11]  Jan Karel Lenstra,et al.  Approximation algorithms for scheduling unrelated parallel machines , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[12]  Sebastiano Vigna,et al.  BUbiNG: massive crawling for the masses , 2014, WWW.

[13]  Niv Buchbinder,et al.  Submodular Functions Maximization Problems , 2018, Handbook of Approximation Algorithms and Metaheuristics.

[14]  Andreas Krause,et al.  Submodular Function Maximization , 2014, Tractability.

[15]  Joseph Naor,et al.  Improved Approximations for k-Exchange Systems - (Extended Abstract) , 2011, ESA.

[16]  Robert Preis,et al.  Linear Time 1/2-Approximation Algorithm for Maximum Weighted Matching in General Graphs , 1999, STACS.

[17]  Julián Mestre,et al.  Greedy in Approximation Algorithms , 2006, ESA.

[18]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[19]  Éva Tardos,et al.  An approximation algorithm for the generalized assignment problem , 1993, Math. Program..

[20]  Sanjeev Khanna,et al.  A Polynomial Time Approximation Scheme for the Multiple Knapsack Problem , 2005, SIAM J. Comput..

[21]  Mahantesh Halappanavar,et al.  New Effective Multithreaded Matching Algorithms , 2014, 2014 IEEE 28th International Parallel and Distributed Processing Symposium.

[22]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[23]  Hui Lin,et al.  Word Alignment via Submodular Maximization over Matroids , 2011, ACL.

[24]  Aravind Srinivasan,et al.  Balancing Relevance and Diversity in Online Bipartite Matching via Submodularity , 2018, AAAI.

[25]  S. M. Ferdous,et al.  Approximation algorithms in combinatorial scientific computing , 2019, Acta Numerica.

[26]  Henry F. Schaefer,et al.  New variations in two-electron integral evaluation in the context of direct SCF procedures , 1991 .

[27]  Stefan Hougardy,et al.  A simple approximation algorithm for the weighted matching problem , 2003, Inf. Process. Lett..

[28]  Jonathan M Waldrop,et al.  From NWChem to NWChemEx: Evolving with the Computational Chemistry Landscape. , 2021, Chemical reviews.

[29]  Rajeev Rastogi,et al.  Recommendations to boost content spread in social networks , 2012, WWW.

[30]  Kaito Fujii Faster approximation algorithms for maximizing a monotone submodular function subject to a b-matching constraint , 2016, Inf. Process. Lett..

[31]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[32]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[33]  Andreas Krause,et al.  Near-optimal Nonmyopic Value of Information in Graphical Models , 2005, UAI.