Coupling nearshore and aeolian processes: XBeach and duna process-based models

Abstract A new dune profile model, Duna, is developed and coupled with the existing XBeach model, in which some key improvements allow a much better behaviour of the intertidal beach and the inclusion of structural erosion or accretion through a longshore transport gradient. The model is shown to represent typical behaviour of a beach-dune system in Praia de Faro, Portugal and to be able to simulate processes on a decadal timescale. The model captures a balance between longshore gradients and cross-shore processes in the surf zone, competing effects of moderate conditions and storms in the intertidal area and between build-up by storm waves and aeolian transport on the berm. Vegetation behaviour is shown to play a key role in the development of the shape of the foredunes. The relation between progradation or recession rate and foredune height as often reported in literature is reproduced and explained.

[1]  Magnus Larson,et al.  Simulating cross-shore material exchange at decadal scale. Theory and model component validation , 2016 .

[2]  P. Hesp,et al.  Jet flow over foredunes , 2016 .

[3]  C. Houser Synchronization of transport and supply in beach-dune interaction , 2009 .

[4]  George M. Kaminsky,et al.  New Insights on Coastal Foredune Growth: The Relative Contributions of Marine and Aeolian Processes , 2018 .

[5]  P. Hesp Morphology, dynamics and internal stratification of some established foredunes in southeast Australia , 1988 .

[6]  Ap van Dongeren,et al.  Predicting coastal hazards for sandy coasts with a Bayesian Network , 2016 .

[7]  Bernard O. Bauer,et al.  A general framework for modeling sediment supply to coastal dunes including wind angle, beach geometry, and fetch effects , 2003 .

[8]  Orencio Durán,et al.  Vegetation controls on the maximum size of coastal dunes , 2013, Proceedings of the National Academy of Sciences.

[9]  I. Delgado‐Fernandez A review of the application of the fetch effect to modelling sand supply to coastal foredunes , 2010 .

[10]  R. Ranasinghe,et al.  A New Alternative to Saving Our Beaches from Sea-Level Rise: The Sand Engine , 2013 .

[11]  R. Davidson‐Arnott,et al.  Topographic Steering of Alongshore Airflow over a Vegetated Foredune: Greenwich Dunes, Prince Edward Island, Canada , 2006 .

[12]  Gerd Sauermann,et al.  Minimal model for sand dunes. , 2002, Physical review letters.

[13]  B. Latteux,et al.  Approaches to long-term modelling of coastal morphology : A review , 1993 .

[14]  H. Karunarathna,et al.  A statistical-process based approach for modelling beach profile variability , 2013 .

[15]  Dirk-Jan R. Walstra,et al.  Input reduction for long-term morphodynamic simulations in wave-dominated coastal settings , 2013 .

[16]  N. Kraus,et al.  Mathematical modeling of the fate of beach fill , 1991 .

[17]  Irene Delgado-Fernandez,et al.  Meso-scale modelling of aeolian sediment input to coastal dunes , 2011 .

[18]  S. Vries,et al.  A process‐based model for aeolian sediment transport and spatiotemporal varying sediment availability , 2016 .

[19]  Ad Reniers,et al.  Modeling cross-shore sandbar behavior on the timescale of weeks , 2007 .

[20]  P. Hesp,et al.  Surfzone-Beach-Dune interactions: Flow and Sediment Transport across the Intertidal Beach and Backshore , 2016 .

[21]  B. Bauer,et al.  Scale-dependent perspectives on the geomorphology and evolution of beach-dune systems , 2017 .

[22]  S. M. Arens Patterns of sand transport on vegetated foredunes , 1996 .

[23]  J. Keijsers,et al.  Modeling the biogeomorphic evolution of coastal dunes in response to climate change , 2016 .

[24]  Stijn Temmerman,et al.  Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh , 2005 .

[25]  B. Latteux,et al.  Techniques for long-term morphological simulation under tidal action , 1995 .

[26]  M. Vousdoukas,et al.  Beach erosion and recovery during consecutive storms at a steep‐sloping, meso‐tidal beach , 2012 .

[27]  P. Ruggiero,et al.  Exploring Marine and Aeolian Controls on Coastal Foredune Growth Using a Coupled Numerical Model , 2019, Journal of Marine Science and Engineering.

[28]  R. Buckley The effect of sparse vegetation on the transport of dune sand by wind , 1987, Nature.

[29]  N. Kraus,et al.  Sbeach, Numerical Model for Simulating Storm-Induced Beach Change: Report 1: Empirical Foundation and Model Development , 2019 .

[30]  J. Cooper,et al.  Three-dimensional airflow and sediment transport patterns over barchan dunes , 2017 .

[31]  B. Bauer,et al.  Aeolian sediment transport on a beach : Thresholds, intermittency, and high frequency variability , 2009 .

[32]  B. Bauer,et al.  Flow deflection over a foredune , 2015 .

[33]  Ian J. Walker,et al.  Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport , 2009 .

[34]  Akira Watanabe,et al.  SEDIMENT TRANSPORT UNDER SHEET FLOW CONDITION , 1982 .

[35]  M. DijkvanJ.P.,et al.  Aeolian processes across transverse dunes. I: Modelling the air flow , 1999 .

[36]  C. B. Vreugdenhil,et al.  A depth-integrated model for suspended sediment transport , 1985 .

[37]  Norbert P. Psuty,et al.  Sediment budget and dune/beach interaction , 1988 .

[38]  Andrew D. Short,et al.  Wave, beach and dune interactions in southeastern Australia , 1982 .

[39]  A. Murray,et al.  Reducing model complexity for explanation and prediction , 2007 .

[40]  Douglas J. Sherman,et al.  Dynamics of beach-dune systems , 1993 .

[41]  S. M. Arens,et al.  Air flow over foredunes and implications for sand transport , 1995 .

[42]  P. Ruggiero,et al.  Vegetation control allows autocyclic formation of multiple dunes on prograding coasts , 2016 .

[43]  N. Psuty The Coastal Foredune: A Morphological Basis for Regional Coastal Dune Development , 2008 .

[44]  Ranasinghe W M R J B Ranasinghe,et al.  A morphological modeling study to compare different methods of wave climate schematization and evaluate strategies to reduce erosion losses from a beach nourishment project , 2016 .

[45]  B. Bauer,et al.  Mean flow and turbulence responses in airflow over foredunes: New insights from recent research , 2009 .

[46]  D. Roelvink,et al.  Improving predictions of swash dynamics in XBeach: The role of groupiness and incident-band runup , 2017 .

[47]  J. A. Roelvink,et al.  Medium-term 2DH coastal area modelling , 1993 .

[48]  Hans J Herrmann,et al.  Vegetation against dune mobility. , 2006, Physical review letters.

[49]  Mick van der Wegen,et al.  Do salt marshes survive sea level rise? Modelling wave action, morphodynamics and vegetation dynamics , 2018, Environ. Model. Softw..

[50]  P. Dijk,et al.  Aeolian processes across transverse dunes. II: Modelling the sediment transport and profile development , 1999 .

[51]  R. Bagnold,et al.  The Movement of Desert Sand , 1935 .

[52]  J. Cooper,et al.  Three dimensional airflow patterns within a coastal trough–bowl blowout during fresh breeze to hurricane force winds , 2013 .

[53]  J. Cooper,et al.  Quantifying the role of urbanization on airflow perturbations and dunefield evolution , 2017 .

[54]  Marcel J. F. Stive,et al.  Morphodynamic upscaling with the MORFAC approach: Dependencies and sensitivities , 2011 .

[55]  Dirk-Jan R. Walstra,et al.  On bar growth and decay during interannual net offshore migration , 2012 .

[56]  P. Hesp,et al.  Nebkha flow dynamics and shadow dune formation , 2017 .

[57]  K. Horikawa,et al.  SAND TRANSPORT BY WIND ON A WET SAND SURFACE , 1984 .

[58]  Nicholas C. Kraus,et al.  Calculation of beach change under interacting cross-shore and longshore processes , 2010 .

[59]  Ó. Ferreira,et al.  Surficial sediment texture database for the south-western Iberian Atlantic margin , 2018, Earth System Science Data.

[60]  D. Roelvink,et al.  Modelling storm impacts on beaches, dunes and barrier islands , 2009 .

[61]  R. Ranasinghe,et al.  Aeolian sediment transport in supply limited situations , 2014 .

[62]  S. M. Arens Aeolian processes in the Dutch foredunes , 1994 .

[63]  D. Carruthers,et al.  Air flow and sand transport over sand-dunes , 1991 .

[64]  Jon French,et al.  Appropriate complexity for the prediction of coastal and estuarine geomorphic behaviour at decadal to centennial scales , 2016 .

[65]  J. Johnson SAND MOVEMENT ON COASTAL DUNES , 1963 .

[66]  Ó. Ferreira,et al.  Thresholds for morphological changes on an exposed sandy beach as a function of wave height , 2011 .

[67]  H. Tsoar,et al.  Desert Dune Sand and its Potential for Modern Agricultural Development , 1985 .

[68]  B. Bauer,et al.  Sediment budget controls on foredune height: Comparing simulation model results with field data , 2018 .

[69]  R. Ranasinghe,et al.  Estimating coastal recession due to sea level rise: beyond the Bruun rule , 2012, Climatic Change.

[70]  H J Herrmann,et al.  Continuum saltation model for sand dunes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  J. Iversen,et al.  The effect of wind speed and bed slope on sand transport , 1999 .

[72]  Ian J. Walker,et al.  Aeolian dynamics over a coastal foredune, Prince Edward Island, Canada , 2013 .

[73]  J. A. Roelvink,et al.  Coastal morphodynamic evolution techniques , 2006 .