Optimal quantum estimation in spin systems at criticality
暂无分享,去创建一个
Lorenzo Campos Venuti | M. Paris | L. Venuti | M. Korbman | C. Invernizzi | Carmen Invernizzi | Michael Korbman | Matteo G. A Paris
[1] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[2] W. Wootters. Statistical distance and Hilbert space , 1981 .
[3] Paolo Zanardi,et al. Information-theoretic differential geometry of quantum phase transitions. , 2007, Physical review letters.
[4] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[5] M. Nielsen,et al. Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.
[6] J. P. Barjaktarevic,et al. Fidelity and quantum phase transitions , 2007, cond-mat/0701608.
[7] Marco G. Genoni,et al. Optimal estimation of entanglement , 2008, 0804.1705.
[8] H. Sommers,et al. Bures volume of the set of mixed quantum states , 2003, quant-ph/0304041.
[9] M. Cozzini,et al. Quantum fidelity and quantum phase transitions in matrix product states , 2007 .
[10] L. L. Cam,et al. Asymptotic Methods In Statistical Decision Theory , 1986 .
[11] P. Zanardi,et al. Quantum phase transitions and quantum fidelity in free fermion graphs , 2006, quant-ph/0608059.
[12] C. Helstrom. Quantum detection and estimation theory , 1969 .
[13] G. Milburn,et al. Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.
[14] G. Vidal,et al. Entanglement in quantum critical phenomena. , 2002, Physical review letters.
[15] A. Osterloh,et al. Scaling of entanglement close to a quantum phase transition , 2002, Nature.
[16] Paolo Zanardi,et al. Bures metric over thermal state manifolds and quantum criticality , 2007, 0707.2772.
[17] Dorje C. Brody,et al. Statistical geometry in quantum mechanics , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[18] Dorje C. Brody,et al. Geometrization of statistical mechanics , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[19] N. Paunkovic,et al. Ground state overlap and quantum phase transitions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[20] A. Uhlmann. The "transition probability" in the state space of a ∗-algebra , 1976 .
[21] Ericka Stricklin-Parker,et al. Ann , 2005 .
[22] Paolo Zanardi,et al. Quantum critical scaling of the geometric tensors. , 2007, Physical review letters.