Analyzing Connectivity of Heterogeneous Secure Sensor Networks

We analyze the connectivity of a heterogeneous secure sensor network that uses key predistribution to protect communications between sensors. For this network on a set <inline-formula><tex-math notation="LaTeX">$\mathcal {V}_n$ </tex-math></inline-formula> of <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula> sensors, suppose there is a pool <inline-formula><tex-math notation="LaTeX">$\mathcal {P}_n$</tex-math></inline-formula> consisting of <inline-formula><tex-math notation="LaTeX">$P_n$</tex-math></inline-formula> distinct keys. The <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula> sensors in <inline-formula> <tex-math notation="LaTeX">$\mathcal {V}_n$</tex-math></inline-formula> are divided into <inline-formula> <tex-math notation="LaTeX">$m$</tex-math></inline-formula> groups <inline-formula><tex-math notation="LaTeX">$\mathcal {A}_1, \mathcal {A}_2, \ldots, \mathcal {A}_m$</tex-math></inline-formula>. Each sensor <inline-formula> <tex-math notation="LaTeX">$v$</tex-math></inline-formula> is independently assigned to exactly a group according to the probability distribution with <inline-formula><tex-math notation="LaTeX">$\mathbb {P}[v \in \mathcal {A}_i]= a_i$ </tex-math></inline-formula> for <inline-formula><tex-math notation="LaTeX">$i=1,2,\ldots, m$</tex-math> </inline-formula>, where <inline-formula><tex-math notation="LaTeX">$\sum _{i=1}^{m}a_i = 1$</tex-math></inline-formula> . Afterwards, each sensor in group <inline-formula><tex-math notation="LaTeX">$\mathcal {A}_i$</tex-math> </inline-formula> independently chooses <inline-formula><tex-math notation="LaTeX">$K_{i,n}$</tex-math></inline-formula> keys uniformly at random from the key pool <inline-formula><tex-math notation="LaTeX">$\mathcal {P}_n$</tex-math> </inline-formula>, where <inline-formula><tex-math notation="LaTeX">$K_{1,n} \leq K_{2,n}\leq \ldots \leq K_{m,n}$ </tex-math></inline-formula>. Finally, any two sensors in <inline-formula><tex-math notation="LaTeX">$\mathcal {V}_n$ </tex-math></inline-formula> establish a secure link in between if and only if they have at least one key in common. We present critical conditions for connectivity of this heterogeneous secure sensor network. The result provides useful guidelines for the design of secure sensor networks. This paper improves the seminal work <xref ref-type="bibr" rid="ref1">[1]</xref> (IEEE Transactions on Information Theory 2016) of Yağan on connectivity in the following aspects. First, our result is more broadly applicable; specifically, we consider <inline-formula><tex-math notation="LaTeX">$K_{m,n} / K_{1,n} = o(\sqrt{n})$</tex-math></inline-formula>, while <xref ref-type="bibr" rid="ref1">[1]</xref> requires <inline-formula><tex-math notation="LaTeX">$K_{m,n} / K_{1,n} = o(\ln n)$</tex-math></inline-formula>. Put differently, <inline-formula><tex-math notation="LaTeX">$K_{m,n} / K_{1,n}$ </tex-math></inline-formula> in our paper examines the case of <inline-formula><tex-math notation="LaTeX">$\Theta (n^{x})$</tex-math></inline-formula> for any <inline-formula><tex-math notation="LaTeX">$x <\frac{1}{2}$</tex-math> </inline-formula> and <inline-formula><tex-math notation="LaTeX">$\Theta \big ((\ln n)^y\big)$</tex-math> </inline-formula> for any <inline-formula><tex-math notation="LaTeX">$y > 0$</tex-math></inline-formula>, while that of <xref ref-type="bibr" rid="ref1">[1]</xref> does not cover any <inline-formula><tex-math notation="LaTeX">$\Theta (n^{x})$</tex-math></inline-formula>, and covers <inline-formula><tex-math notation="LaTeX">$\Theta \big ((\ln n)^y)$ </tex-math></inline-formula> for only <inline-formula><tex-math notation="LaTeX">$0<y<1$</tex-math> </inline-formula>. This improvement is possible due to a delicate coupling argument. Second, although both studies show that a critical scaling for connectivity is that the term <inline-formula><tex-math notation="LaTeX">$b_n$</tex-math> </inline-formula> denoting <inline-formula><tex-math notation="LaTeX">$\sum _{j=1}^{m} \left \lbrace a_j \left [1 -{{{P_n-K_{1,n}}\atopwithdelims (){K_{j,n}}}\big /{{P_n}\atopwithdelims (){K_{j,n}}}}\right] \right\rbrace$</tex-math> </inline-formula> equals <inline-formula><tex-math notation="LaTeX">$\frac{\ln n}{n}$</tex-math></inline-formula>, our paper considers any of <inline-formula><tex-math notation="LaTeX">$b_{n}=o\big (\frac{ \ln n }{n}\big)$</tex-math> </inline-formula>, <inline-formula><tex-math notation="LaTeX">$b_{n}=\Theta \big (\frac{ \ln n }{n}\big)$</tex-math> </inline-formula>, and <inline-formula><tex-math notation="LaTeX">$b_{n}=\omega \big (\frac{ \ln n }{n}\big)$</tex-math> </inline-formula>, while <xref ref-type="bibr" rid="ref1">[1]</xref> evaluates only <inline-formula> <tex-math notation="LaTeX">$b_{n}=\Theta \big (\frac{ \ln n }{n}\big)$</tex-math></inline-formula>. Third, in terms of characterizing the transitional behavior of connectivity, our scaling <inline-formula><tex-math notation="LaTeX"> $b_{n}=\frac{ \ln n + \beta _n}{n}$</tex-math></inline-formula> for a sequence <inline-formula> <tex-math notation="LaTeX">$\beta _n$</tex-math></inline-formula> is more fine-grained than the scaling <inline-formula> <tex-math notation="LaTeX">$b_{n}\sim \frac{c \ln n}{n}$</tex-math></inline-formula> for a constant <inline-formula> <tex-math notation="LaTeX">$c \ne 1$</tex-math></inline-formula> of <xref ref-type="bibr" rid="ref1">[1]</xref>. In a nutshell, we add the case of <inline-formula><tex-math notation="LaTeX">$c=1$</tex-math></inline-formula> in <inline-formula><tex-math notation="LaTeX">$b_{n}\sim \frac{c \ln n}{n}$</tex-math></inline-formula>, where the graph can be connected or disconnected asymptotically, depending on the limit of <inline-formula><tex-math notation="LaTeX"> $\beta _n$</tex-math></inline-formula>. Finally, although a recent study by Eletreby and Yağan <xref ref-type="bibr" rid="ref2">[2]</xref> uses the fine-grained scaling discussed before for a more complex graph model, their result (just like <xref ref-type="bibr" rid="ref1">[1]</xref>) also demands <inline-formula> <tex-math notation="LaTeX">$K_{m,n} / K_{1,n} = o(\ln n)$</tex-math></inline-formula>, which is less general than <inline-formula><tex-math notation="LaTeX">$K_{m,n} / K_{1,n} = o(\sqrt{n})$</tex-math></inline-formula> addressed in this paper.

[1]  Rashad Eletreby,et al.  $k$ -Connectivity of Inhomogeneous Random Key Graphs With Unreliable Links , 2019, IEEE Transactions on Information Theory.

[2]  Armand M. Makowski,et al.  Zero–One Laws for Connectivity in Random Key Graphs , 2009, IEEE Transactions on Information Theory.

[3]  Mohsen Guizani,et al.  A framework for a distributed key management scheme in heterogeneous wireless sensor networks , 2008, IEEE Trans. Wirel. Commun..

[4]  Stefanie Gerke,et al.  Connectivity of the uniform random intersection graph , 2008, Discret. Math..

[5]  Jun Zhao,et al.  $k$ -Connectivity in Random Key Graphs With Unreliable Links , 2015, IEEE Transactions on Information Theory.

[6]  Virgil D. Gligor,et al.  On the strengths of connectivity and robustness in general random intersection graphs , 2014, 53rd IEEE Conference on Decision and Control.

[7]  Peter Marbach A lower-bound on the number of rankings required in recommender systems using collaborativ filtering , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[8]  Dawn Xiaodong Song,et al.  Random key predistribution schemes for sensor networks , 2003, 2003 Symposium on Security and Privacy, 2003..

[9]  Mindaugas Bloznelis,et al.  Degree and clustering coefficient in sparse random intersection graphs , 2013, 1303.3388.

[10]  Osman Yağan,et al.  Connectivity of Wireless Sensor Networks Secured by Heterogeneous Key Predistribution Under an On/Off Channel Model , 2016, IEEE Transactions on Control of Network Systems.

[11]  Osman Yagan Connectivity in inhomogeneous random key graphs , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[12]  Roberto Di Pietro,et al.  Redoubtable Sensor Networks , 2008, TSEC.

[13]  S. Sitharama Iyengar,et al.  Distributed Sensor Networks, Second Edition: Sensor Networking and Applications , 2012 .

[14]  Virgil D. Gligor,et al.  Secure k-connectivity in wireless sensor networks under an on/off channel model , 2013, 2013 IEEE International Symposium on Information Theory.

[15]  Jun Zhao,et al.  On Connectivity and Robustness in Random Intersection Graphs , 2017, IEEE Transactions on Automatic Control.

[16]  Mindaugas Bloznelis,et al.  Component evolution in a secure wireless sensor network , 2009 .

[17]  Jun Zhao,et al.  Connectivity in secure wireless sensor networks under transmission constraints , 2014, 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[18]  Virgil D. Gligor,et al.  A key-management scheme for distributed sensor networks , 2002, CCS '02.

[19]  Jun Zhao,et al.  Critical behavior in heterogeneous random key graphs , 2015, 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[20]  Katarzyna Rybarczyk,et al.  Diameter, connectivity, and phase transition of the uniform random intersection graph , 2011, Discret. Math..

[21]  Virgil D. Gligor,et al.  Brief Encounters with a Random Key Graph , 2009, Security Protocols Workshop.

[22]  Osman Yagan Zero-One Laws for Connectivity in Inhomogeneous Random Key Graphs , 2016, IEEE Transactions on Information Theory.

[23]  Erhard Godehardt,et al.  Random Intersection Graphs and Classification , 2006, GfKl.

[24]  F. Ball,et al.  Epidemics on random intersection graphs , 2010, 1011.4242.

[25]  Douglas R. Stinson,et al.  On the complexity of the herding attack and some related attacks on hash functions , 2012, Des. Codes Cryptogr..

[26]  Firdous Kausar,et al.  An efficient key distribution scheme for heterogeneous sensor networks , 2007, IWCMC.

[27]  Osman Yagan,et al.  Reliability of Wireless Sensor Networks under a Heterogeneous Key Predistribution Scheme , 2016 .

[28]  Erhard Godehardt,et al.  Two Models of Random Intersection Graphs for Classification , 2003 .

[29]  Mohsen Guizani,et al.  An effective key management scheme for heterogeneous sensor networks , 2007, Ad Hoc Networks.